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SPEARMAN’S HYPOTHESIS

Charles Spearman (1904): There are two types of intelligence,
eductive and reproductive

To test this theory, he invented Factor Analysis:

inner-dimension (2)
students (1000)

M = A B

tests (10)

eductive (adj): the ability to make sense out of complexity
reproductive (adj): the ability to store and reproduce information




Given: V]| :Z ai® bi
= A B" = AR R1B'

“correct” factors alternative factorization

[When can we recover the factors a, and b, uniquely? J

Claim: The factors {a,} and {b,} are not determined uniquely
unless we impose additional conditions on them

e.g.if {a,} and {b;} are orthogonal, or rank(M)=1

This is called the rotation problem, and is a major issue in
factor analysis and motivates the study of tensor methods...




OUTLINE

The focus of this tutorial is on Algorithms/Applications/Models
for tensor decompositions

Part I: Algorithms
* The Rotation Problem

* Jennrich’s Algorithm

Part Il: Applications
* Phylogenetic Reconstruction

* Pure Topic Models

Part lll: Smoothed Analysis
* Overcomplete Problems

e Kruskal Rank and the Khatri-Rao Product
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MATRIX DECOMPOSITIONS
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[When are tensor decompositions unique? }

Theorem [Jennrich 1970]: Suppose {a.} and {b .} are linearly
independent and no pair of vectors in {c;} is a scalar multiple
of each other. Then

T'=a1 b1 ®Rc1+ - +ap@br R cp

is unique up to permuting the rank one terms and rescaling
the factors.

Equivalently, the rank one factors are unique

[There is a simple algorithm to compute the factors too! }
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JENNRICH’S ALGORITHM

B» ComputeT(*,*,x)
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JENNRICH’S ALGORITHM

B» ComputeT(*,*,x)
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l.e. add up matrix slices
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JENNRICH’S ALGORITHM

B» ComputeT(e*,*,x)
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JENNRICH’S ALGORITHM

b.
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B» ComputeT(*,*,x)
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l.e. add up matrix slices
X




JENNRICH’S ALGORITHM

b.
®
A

X-V

Vv
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B» ComputeT(*,*,x)

1"

l.e. add up matrix slices
X

A
A 7
x&xaxxx\xxx\xx

(x is chosen uniformly at random from S™1)



Diag(< ¢;, x>)
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B» ComputeT(e,*,x) = AD, BT
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l.e. add up matrix slices
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JENNRICH’S ALGORITHM



JENNRICH’S ALGORITHM

B» ComputeT(e*,*,x) = AD,B'

B ComputeT(e,*,y) = AD B'

B Diagonalize T(*,*,x) T(*,°*,y)*




JENNRICH’S ALGORITHM

B» ComputeT(e*,*,x)

AD, BT
B ComputeT(e,*,y) = AD B'

B Diagonalize T(*,*,x) T(°*,°*,y)?

AD,BT(B")1D, 1Al




JENNRICH’S ALGORITHM

B» ComputeT(e,*,x) = AD,B'

B» ComputeT(e*,*,y) = AD B'

B Diagonalize T(®,®,x) T(°*,°*,y)*

AD,D, A"




JENNRICH’S ALGORITHM

B» ComputeT(e*,*,x)

AD, BT
B ComputeT(e,*,y) = AD B'

B Diagonalize T(*,*,x) T(°*,°*,y)?

AD,D /A"

Claim: whp (over x,y) the eigenvalues are distinct, so the
Eigendecomposition is unique and recovers a.’s




JENNRICH’S ALGORITHM

B» ComputeT(*,*,x)

AD, BT
W ComputeT(e,e*,y) = AD B'

B Diagonalize T(®,*,x) T(e*,*,y)?




JENNRICH’S ALGORITHM

#» ComputeT(®,*,x) = AD B’

B ComputeT(e,e*,y) = AD B'
B Diagonalize T(®,*,x) T(e*,*,y)?

B Diagonalize T(*,*,y) T(°®,*,x)*




JENNRICH’S ALGORITHM

B» ComputeT(e,*,x)

AD, BT
B ComputeT(e,e*,y) = AD B'
B Diagonalize T(*,*,x) T(°*,°*,y)?

B® Diagonalize T(*,*,y) T(*,*,x)?

B Match up the factors (their eigenvalues are
reciprocals) and find {c,} by solving a linear syst.




Given: M| = 2 ai®bi

When can we recover the factors a, and b, uniquely?

This is only possible if {a.} and {b,} are orthonormal, or rank(M)=1
Given: T = Z 2, Q@b Qc

When can we recover the factors a,, b, and ¢, uniquely?

Jennrich: If {a.} and {b.} are full rank and no pair in {c.} are scalar
multiples of each other
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OUTLINE

The focus of this tutorial is on Algorithms/Applications/Models
for tensor decompositions

Part I: Algorithms
* The Rotation Problem

* Jennrich’s Algorithm

Part Il: Applications
* Phylogenetic Reconstruction

* Pure Topic Models

Part lll: Smoothed Analysis
* Overcomplete Problems

e Kruskal Rank and the Khatri-Rao Product
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PHYLOGENETIC RECONSTRUCTION

= extinct

= extant

“Tree of Life”




PHYLOGENETIC RECONSTRUCTION

extinct

extant




PHYLOGENETIC RECONSTRUCTION

(x) root:m:2->R"
“initial distribution”

O = extinct
O = extant

> = alphabet

“conditional
distribution”

In each sample, we observe a symbol (2) at each extant

(O) node where we sample from nt for the root, and
propagate it using R, ,, etc




HIDDEN MARKOV MODELS

3 > R* O = hidden
* 7S

“initial distribution” O observed

‘,,/

R, y “transition matrices”

“obs. matrices

In each sample, we observe a symbol (Z_) at each obs.
(O) node where we sample from rt for the start, and
propagate it using R, ,, etc (2,)

X,y’




Question: Can we reconstruct just the topology from
random samples?

Usually, we assume T, , etc are full rank so that we can re-root

the tree arbitrarily

X,y?

[Steel, 1994]: The following is a distance function on the edges

d. =-In|det(P, )| +%In[In,,-%inlln,

oin cin2

where P, . is the joint distribution, and the distance between
leaves is the sum of distances on the path in the tree

(It’s not even obvious it’s nonnegative!)
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Question: Can we reconstruct just the topology from
random samples?

Usually, we assume T, , etc are full rank so that we can re-root

the tree arbitrarily

X,y?

[Erdos, Steel, Szekely, Warnow, 1997]: Used Steel’s distance
function and quartet tests

© D o © 9 or

©) o o ©

to reconstruction the topology, from polynomially many samples

For many problems (e.g. HMMs) finding the transition matrices is
the main issue... 27




[Chang, 1996]: The model is identifiable (if R’s are full rank)

Joint distribution over (a, b, c):

' Priz = o] Prlalz = o] @Prib|z = 6] @ Pric|z = o]

columns of R,
28 ’



[Mossel, Roch, 2006]: There is an algorithm to PAC learn a
phylogenetic tree or an HMM (if its transition/output matrices
are full rank) from polynomially many samples

[Question: Is the full-rank assumption necessary? }

[Mossel, Roch, 2006]: It is as hard as noisy-parity to learn the
parameters of a general HMM

Noisy-parity is an infamous problem in learning, where O(n)
samples suffice but the best algorithms run in time 2"/log(n)

Due to [Blum, Kalai, Wasserman, 2003]

(It’s now used as a hard problem to build cryptosystems!)




THE POWER OF CONDITIONAL INDEPENDENCE

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)

Z Pr(z = o] Pr[a]z = 6]@Pr[b|z = 0] Pr[c|z = o]




PURE TOPIC MODELS

topics (r)

* Each topic is a distribution on words

* Each document is about only one topic

words (m)

(stochastically generated)

* Each document, we sample L words
from its distribution
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PURE TOPIC MODELS
A W M




PURE TOPIC MODELS
A W M
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PURE TOPIC MODELS
A W M

|
T -




PURE TOPIC MODELS
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PURE TOPIC MODELS
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PURE TOPIC MODELS
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[Anandkumar, Hsu, Kakade, 2012]: Algorithm for learning pure
topic models from polynomially many samples (A is full rank)
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PURE TOPIC MODELS
A W

.
1

<>

0

[Anandkumar, Hsu, Kakade, 2012]: Algorithm for learning pure
topic models from polynomially many samples (A is full rank)

Question: Where can we find three conditionally
independent random variables?
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PURE TOPIC MODELS
A W

<>

0

[Anandkumar, Hsu, Kakade, 2012]: Algorithm for learning pure
topic models from polynomially many samples (A is full rank)
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PURE TOPIC MODELS
A W

.
1

<>

0

[Anandkumar, Hsu, Kakade, 2012]: Algorithm for learning pure
topic models from polynomially many samples (A is full rank)

The first, second and third words are independent conditioned
on the topic t (and are random samples from A,)
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THE POWER OF CONDITIONAL INDEPENDENCE

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)
D Priz =] Prla|z = 6]@Prlb|z = 6] @ Prlc|z = o]
o
[Pure Topic Models/LDA]: (joint distribution on first three words)
Z Pritopic=j] A QAQ A
J
[Community Detection]: (counting stars)

D PriC, =il (C,N), @ (CsM), @ (C ),
J "




OUTLINE

The focus of this tutorial is on Algorithms/Applications/Models
for tensor decompositions

Part I: Algorithms
* The Rotation Problem

* Jennrich’s Algorithm

Part Il: Applications
* Phylogenetic Reconstruction

* Pure Topic Models

Part lll: Smoothed Analysis
* Overcomplete Problems

e Kruskal Rank and the Khatri-Rao Product
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So far, Jennrich’s algorithm has been the key but it has a crucial
limitation. Let

T = Z 2, Qa;Qa

where {a } are n-dimensional vectors

[Question: What if R is much larger than n? }

This is called the overcomplete case — e.g. the number of factors
is much larger than the number of observations...

In such cases, why stop at third-order tensors?
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Consider a sixth-order tensor T:

T = Z 23 @a®a 2 @aQa

[Question: Can we find its factors, even if R is much larger than n?}

Let’s flatten it by rearranging its entries into a third-order tensor:

R
flat(T) = Z b; @ b, b, (Wh;bi = 4 ®KRai )
i=1

n2-dimensional vector whose (j,k)" entry is the product of
the jt" and k' entries of a, — Khatri-Rao product
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[Question: Can we apply Jennrich’s Algorithm to flat(T)? }

When are the new factors bi = a; ® d. linearly independent?
KR

Example #1:

n ) ,
Let {a} be all ( 5 ) vectors with exactly two ones Non-zero
Then {b;} are vectorizations of: only in b;

[ ]

and are linearly independent
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[Question: Can we apply Jennrich’s Algorithm to flat(T)? }

When are the new factors bi = a; ® d; linearly independent?
KR

Example #2:

Let {a, ,}and {a } be two random orthonormal bases

n+1..2n

Then there is a linear dependence with 2n terms:

Zai®KRai = Zai®KRai =0

i =n+l

(as matrices, both sum to the identity)

48




THE KRUSKAL RANK

Definition: The Kruskal rank (k-rank) of {b.} is the largest k s.t.
every set of k vectors is linearly independent

bi = d, ®KRai k-rank({a.}) = n
n
Example #1: k-rank({b.}) =R = ( ) )

Example #2: k-rank({b.}) = 2n-1

The Kruskal rank always adds under the Khatri-Rao product, but
sometimes it multiplies and that can allow us to handle R >>n
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[Allman, Matias, Rhodes, 2009]: Almost surely, the Kruskal
rank multiplies under the Khatri-Rao product

Proof: The set of {a .} where
b, = 3, ®K§i and det({b;}) =0

is measure zero |

But this yields a very weak bound on the condition number
of {b}...

... which is what we need to apply it to learning/statistics,
where we have an estimateto T
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[Allman, Matias, Rhodes, 2009]: Almost surely, the Kruskal
rank multiplies under the Khatri-Rao product

Definition: The robust Kruskal rank (k-rank ) of {b;} is the largest
k s.t. every set of k vector has condition number at most O(y)

[Bhaskara, Charikar, Vijayaraghavan, 2013]: The robust Kruskal
rank always under the Khatri-Rao product

[Bhaskara, Charikar, Moitra, Vijayaraghavan, 2014]: Suppose
the vectors {a,} are e-perturbed. Then

k-rank ({b;}) = R

for R =n?/2 and y = poly(1/n, €) with exponentially small failure
probability ()
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[Bhaskara, Charikar, Moitra, Vijayaraghavan, 2014]: Suppose
the vectors {a,} are e-perturbed. Then

k-rankv({bi}) =R

for R=n?%/2 and y = poly(1/n, €) with exponentially small failure
probability (6)

[Hence we can apply Jennrich’s Algorithm to flat(T) with R >> n}

Note: These bounds are easy to prove with inverse polynomial
failure probability, but then y depends 6

This can be extended to any constant order Khatri-Rao product
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[Bhaskara, Charikar, Moitra, Vijayaraghavan, 2014]: Suppose
the vectors {a,} are e-perturbed. Then

k-rank,({b;}) = R

for R=n?%/2 and y = poly(1/n, €) with exponentially small failure
probability (6)

[Hence we can apply Jennrich’s Algorithm to flat(T) with R >> n}

Sample application: Algorithm for learning mixtures of n°)
spherical Gaussians in R, if their means are e-perturbed

This was also obtained independently by [Anderson, Belkin,
Goyal, Rademacher, Voss, 20145]3




Any Questions?

Summary:

* Tensor decompositions are unigue under much more
general conditions, compared to matrix decompositions

* Jennrich’s Algorithm (rediscovered many times!),
and its many applications in learning/statistics

* Introduced new models to study overcomplete
problems (R >> n)

* Are there algorithms for order-k tensors that work
with R = n0->1k?
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