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1996

break natural images into patches:

B NI
mIlDHEERESD
sparse coding RITMENSE=EWN
(1] 558 S A O 2
- B 1 B 5 M =
G (T 5 S O
WA
EEmEN e

© Nature. All rights reserved. This content is
excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/
help/fag-fair-use/.

Properties: localized,
bandpass and oriented

(collection of vectors)


http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

B. A. Olshausen, D. J. Field. “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images”,
1996

break natural images into patches:

singular value

decomposition NO|Sy|
‘ Difficult to

interpret!

(collection of vectors)



OUTLINE

Are there efficient, neural algorithms for sparse
coding with provable guarantees?

Part I: The Olshausen-Field Update Rule
* A Non-convex Formulation
* Neural Implementation

* A Generative Model; Prior Work

Part Il: A New Update Rule
* Online, Local and Hebbian with Provable Guarantees
* Connections to Approximate Gradient Descent

* Further Extensions



More generally, many types of data are sparse in an appropriately
chosen basis:

at most k
dictionary (n x m) non-zeros
l l \
A oooX(i)ooo ~ XX b(i)ioo
0
Sparse Coding/ €.8. images,
Dictionary Learning: signals,...
Can we learn A from | i ' ‘ i
examples?

representations (m x p) data (n x p)



NONCONVEX FORMULATIONS

Usual approach, minimize reconstruction error:

P P
min ) [[60 - Axo | + ) L)
A, xiVs — -

non-linear penalty function

(encourage sparsity)

This optimization problem is NP-hard, can have many local
optima; but heuristics work well nevertheless...
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A NEURAL IMPLEMENTATION

[Olshausen, Field]:
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This network performs gradient descent on:
2
|b-Ax||"+ L(x)

by alternating between (1) r €«— b — Ax
(2) x<— x + n(A'r =V L(x))

Moreover A is updated through Hebbian rules

{There are no provable guarantees, but works well 1

But why should gradient descent on a non-convex function
work?

Are simple, local and Hebbian rules sufficient to find globally
optimal solutions? "



OTHER APPROACHES, AND APPLICATIONS

Signal Processing/Statistics (MOD, kSVD):
* De-noising, edge-detection, super-resolution

* Block compression for images/video

Machine Learning (LBRNOSG, ...):
* Sparsity as a regularizer to prevent over-fitting

* Learned sparse reps. play a key role in deep-learning

Theoretical Computer Science (SWW13, AGM14, AAIJNT14):

* New algorithms with provable guarantees, in a natural
generative model
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Generative Model:

* unknown dictionary A
* generate x with support of size k u.a.r., choose non-zero
values independently, observe b = Ax 7

[Spielman, Wang, Wright ‘13]: works for full coln rank A up to
sparsity roughly n”> (hence m < n)

[Arora, Ge, Moitra ‘14]: works for overcomplete, p-incoherent A
up to sparsity roughly n”=¢/pu

[Agarwal et al. ‘14]: works for overcomplete, p-incoherent A
up to sparsity roughly n”/y, via alternating minimization

[Barak, Kelner, Steurer ‘14]: works for overcomplete A up to
sparsity roughly nt, but running time is exponential in accuracy



OUR RESULTS

Suppose k < Vn/u polylog(n) and||A]|< Vn polylog(n)

Suppose A that is column-wise 6-close to A for & < 1/polylog(n)

Theorem [Arora, Ge, Ma, Moitra ‘14]: There is a variant of
the OF-update rule that converges to the true dictionary
at a geometric rate, and uses a polynomial number of samples

All previous algorithms had suboptimal sparsity, worked in
less generality, or were exponential in a natural parameter

Note: k <Vn/2u is a barrier, even for sparse recovery

i.e. if k>Vn/2y, then x is not necessarily the sparsest soln to Ax=b



OUTLINE

Are there efficient, neural algorithms for sparse
coding with provable guarantees?

Part I: The Olshausen-Field Update Rule
* A Non-convex Formulation
* Neural Implementation

* A Generative Model; Prior Work

Part Il: A New Update Rule
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A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATbt)

q
(2) 3 < /A\\ + N Z(b(i) _/A’)Z(i))sgn(;(\(i))T

=1



A NEW UPDATE RULE

Alternate between the following steps (size g batches):

(1) XO = threshold(ATb®M) (zero out small entries)

q
(2) A< A+ Z(b(‘) — Ax)sgn(XM)T

=1



A NEW UPDATE RULE
Alternate between the following steps (size g batches):
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A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATht)

q
2) A<« A +n Z(b(‘) _ AR)sgn(RM)T

=1

{The samples arrive online J

In contrast, previous (provable) algorithms might need to
compute a new estimate from scratch, when new samples arrive
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A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATbt)

q
2) A<« A +n Z(b(‘) _ AR)sgn(RM)T

=1

{The computation is local J

In particular, the output is a thresholded, weighted sum of
activations

24



A NEW UPDATE RULE
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A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATht)

g
(2) A €« A + N Z(b(‘) — AXN)sgn(xM)T

=1

[The update rule is explicitly Hebbiar@
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A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATht)

g
(2) A €« A + N Z(b(‘) — AXN)sgn(xM)T

=1

{The update rule is explicitly Hebbian J

(" 7,
neurons that fire together, wire together
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A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATht)

g
(2) A €« A + N Z(b(‘) — AXN)sgn(xM)T
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A NEW UPDATE RULE

Alternate between the following steps (size g batches):

(1) X0 = threshold(ATbt)

q
2) A<« A +n Z(b(‘) _ AR)sgn(RM)T

=1

{The update rule is explicitly Hebbian J

The update to a weight /Ai,j is the product of the activations at
the residual layer and the decoding layer
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WHAT IS NEURALLY PLAUSIBLE, ANYWAYS?

Our update rule (essentially) inherits a neural implementation
from [Olshausen, Field]

However there are many competing theories for what
constitutes a plausible neural implementation

e.g. nonnegative outputs, no bidirectional links, etc...

But ours is online, local and Hebbian, all of which are basic
properties to require

optimal solutions to highly non-trivial algorithmic problems!

30

[The surprise is that such simple building blocks can find globally}




APPROXIMATE GRADIENT DESCENT

We give a general framework for designing and analyzing
iterative algorithms for sparse coding

The usual approach is to think of them as trying to minimize
a non-convex function:

A A A2
min E(A,X)=HB 'AXHF

A, coln-sparse X
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APPROXIMATE GRADIENT DESCENT

We give a general framework for designing and analyzing
iterative algorithms for sparse coding

The usual approach is to think of them as trying to minimize
a non-convex function:

min E(,) ‘B F

A A, coln-sparse X /’ ‘\

colns are b'V’s colns are X’s

2
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APPROXIMATE GRADIENT DESCENT

We give a general framework for designing and analyzing
iterative algorithms for sparse coding

How about thinking of them as trying to minimize an unknown,
convex function?

A A 2
min E(A, X)=||B - Ax||’
A

Now the function is strongly convex, and has a global optimum
that can be reached by gradient descent!

New Goal: Prove that (with high probability) the step (2)
approximates the gradient of this function
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CONDITIONS FOR CONVERGENCE

Consider the following general setup:
optimal solution: z°
update: z5*'1=z°—ng°

Definition: g° is (a, B, €.)-correlated with z" if for all s:
2
g5z 2 a‘ zS—z*” + B ‘

Theorem: If g is (a, B, €,)-correlated with z*, then

2
- €,

gS

2 2 Max, €
‘ZS-Z*H < (1-2an)s zo-z*H + s s

a
This follows immediately from the usual proof...




(1) X0 = threshold(ATb)

Decoding Lemma: If A is 1/polylog(n)-close to A and IIA\— All <2,
then decoding recovers the signs correctly (whp)

~ A Q9  AA A
(2) A €<— A + N (b(l) _Ax(l))sgn(x('))T
=1

Key Lemma: Expectation of (the column-wise) update rule is

KJ&— /Aj + & (I - /A\\JT A+ EER[KR/ART]A,- + error
i

A i
Aj- A, systemic bias

where R = supp(x)\], if decoding recovers the correct signs

Auxiliary Lemma: 1A - All < 2, remains true throughout
if n is small enough and q is large enough



Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x.

g = E[(b — AX)sgn(X) 1] + E[(b — Ax)sgn (X)) 1]
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Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x.

g, = E[(b— AX)sgn(X)) 1;] £
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Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x.

g, = E[(b— AX)sgn(x)) 1;] £
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Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x.

g =E[(b— ﬂthreshold(ﬂTb)) sgn(x;) 1] £ ¢
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Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x. Let S = supp(x).

g = E[(b— AJAdb) sgn(x) 1,] £ ¢
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Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x. Let S = supp(x).

g = E[(b— AJAb) sgn(x,)]
— E[(b — A¢Ab) sgn(x;) 1z]
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Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x. Let S = supp(x).

g = E[(I — AAD)Ax sgn(x))] £ T
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Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x. Let S = supp(x).

g = E[(I — AAD)Ax sgn(x))] £ T
= EE, [[(1 - AADAX sgn(x)]|S] £ T
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Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x. Let S = supp(x).

g = E[(I — AAD)Ax sgn(x))] £ T
= EE, [[(1 - AADAX sgn(x)]|S] £ T
= p, E[(1 - AADA] £

where p; = E[x; sgn(x;) [j in S].
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Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x. Let S = supp(x).

g = E[(I — AAD)Ax sgn(x))] £ T
= EE, [[(1 - AADAX sgn(x)]|S] £ T
= p, E[(1 - AADA] £

where p; = E[x; sgn(x;)[j in S]. Let q; = Pr[jin S], g;; = Pr[i,j in S]
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Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x. Let S = supp(x).

g = E[(I — AAD)Ax sgn(x))] £ T
= EE, [[(1 - AADAX sgn(x)]|S] £ T
= B; Es[(1- /AS/A\‘E)AJ'] =

where p; = E[x; sgn(x;)[j in S]. Let g, = Pr[jin S], g;; = Pr[i,j in S] then

=p;q; (1 - f&jﬂ})Aj +p, /A_jdiag(qi,j)IA_Tj At

46



Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x. Let S = supp(x).

g = E[(I — AAD)Ax sgn(x))] £ T
= EE, [[(1 - AADAX sgn(x)]|S] £ T
= p, E[(1 - AADA] £

where p; = E[x; sgn(x;)[j in S]. Let g, = Pr[jin S], g;; = Pr[i,j in S] then

= P]; (I - '/A\‘j'/A\‘JT)Aj + P /A-jdiag(qi,j)lp\‘-—g Aj +( -
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AN INITIALIZATION PROCEDURE

We give an initialization algorithm that outputs A A that is
column-wise 6-close to A for 6 < 1/polylog(n), IA-All <2

Repeat: (1) Choose samplesb, b’

q
(2) SetM,, = %Z (bTb) (b’Tb() b (b)T
=1

k k
(3) If}\l(Mb,b’) > ? and )\2 << nmgm

output top eigenvector
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AN INITIALIZATION PROCEDURE

We give an initialization algorithm that outputs A A that is
column-wise 6-close to A for 6 < 1/polylog(n), IA-All <2

Repeat: (1) Choose samplesb, b’

q
(2) SetM,, = %Z (bTb) (b’Tb() b (b)T
=1

k k
(3) If}\l(Mb,b’) > ? and )\2 << nmgm

output top eigenvector

Key Lemma: If Ax =b and Ax’ = b’, then condition (3) is satisfied
if and only if supp(x)() supp(x’) = {j} in which case, the top
eigenvector is 6-close to A,
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DISCUSSION

Our initialization gets us to 6 < 1/polylog(n), can be neurally
implemented with Oja’s Rule

Earlier analyses of alternating minimization for 6 < 1/poly(n) in
[Arora, Ge, Moitra ‘14] and [Agarwal et al '14]

/\
However, in those settings A and A are so close that the objective
function is essentially convex

{We show that it converges even from mild starting conditions }

As a result, our bounds improve on existing algorithms in terms
of running time, sample complexity and sparsity (all but SOS)
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FURTHER RESULTS

Adjusting an iterative alg. can have subtle effects on its behavior

We can use our framework to systematically design/analyze
new update rules

E.g. we can remove the systemic bias, by carefully projecting
out along the direction being updated

(1) X0 = threshold(Clb))

whereC [Projat (A1) Proy\L(Az) A .Projat ( ]

A A q A .
(2) A<= A+ n (b") —ﬁjxf'))sgn&j('))T
=1



Any Questions?

Summary:

* Online, local and Hebbian algorithms for sparse
coding that find a globally optimal solution (whp)

* Introduced a framework for analyzing iterative
algorithms by thinking of them as trying to minimize
an unknown, convex function

* The key is working with a generative model

* |s computational intractability really a barrier to a
rigorous theory of neural computation?
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