Simple, Efficient and Neural
Algorithms for Sparse Coding

Ankur Moitra (MIT)

joint work with Sanjeev Arora, Rong Ge and Tengyu Ma

Algorithmic Aspects of Machine Learning
(c) 2015 by Ankur Moitra.

Note: These are unpolished, incomplete course notes.

Developed for educational use at MIT and for publication through MIT OpenCourseware.

B. A. Olshausen, D. J. Field. “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images”,
1996

break natural images into patches:

B NI
mIlDHEERESD
sparse coding RITMENSE=EWN
(1] 558 S A O 2
- B 1 B 5 M =
G (T 5 S O
WA
EEmEN e

© Nature. All rights reserved. This content is
excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/
help/fag-fair-use/.

Properties: localized,
bandpass and oriented

(collection of vectors)

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

B. A. Olshausen, D. J. Field. “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images”,
1996

break natural images into patches:

singular value

decomposition NO|Sy|
‘ Difficult to

interpret!

(collection of vectors)

OUTLINE

Are there efficient, neural algorithms for sparse
coding with provable guarantees?

Part I: The Olshausen-Field Update Rule
* A Non-convex Formulation
* Neural Implementation

* A Generative Model; Prior Work

Part Il: A New Update Rule
* Online, Local and Hebbian with Provable Guarantees
* Connections to Approximate Gradient Descent

* Further Extensions

More generally, many types of data are sparse in an appropriately
chosen basis:

at most k
dictionary (n x m) non-zeros
l l \
A oooX(i)ooo ~ XX b(i)ioo
0
Sparse Coding/ €.8. images,
Dictionary Learning: signals,...
Can we learn A from | i ' ‘ i
examples?

representations (m x p) data (n x p)

NONCONVEX FORMULATIONS

Usual approach, minimize reconstruction error:

P P
min) [[60 - Axo | +) L)
A, xiVs — -

non-linear penalty function

(encourage sparsity)

This optimization problem is NP-hard, can have many local
optima; but heuristics work well nevertheless...

6

A NEURAL IMPLEMENTATION

[Olshausen, Field]:

output

dictionary

stored as -
synapse weights

residual

image
(stimulus)

A NEURAL IMPLEMENTATION

[Olshausen, Field]:

output

—

dictionary
stored as -
synapse weights

S—

residual ® © & o
mee @ @ @ @
(stimulus) b.

j

A NEURAL IMPLEMENTATION

[Olshausen, Field]:

output

—

dictionary
stored as -
synapse weights

r
residual * J
+ + h +
image C)
bj

(stimulus)

A NEURAL IMPLEMENTATION

[Olshausen, Field]:

output

dictionary

stored as -
synapse weights

residual

image
(stimulus)

A NEURAL IMPLEMENTATION

[Olshausen, Field]:

output

dictionary

stored as -
synapse weights

residual

image
(stimulus)

A NEURAL IMPLEMENTATION

[Olshausen, Field]:

output

dictionary

stored as -
synapse weights

residual

image
(stimulus)

This network performs gradient descent on:
2
|b-Ax||"+ L(x)

by alternating between (1) r €«— b — Ax
(2) x<— x + n(A'r =V L(x))

Moreover A is updated through Hebbian rules

{There are no provable guarantees, but works well 1

But why should gradient descent on a non-convex function
work?

Are simple, local and Hebbian rules sufficient to find globally
optimal solutions? "

OTHER APPROACHES, AND APPLICATIONS

Signal Processing/Statistics (MOD, kSVD):
* De-noising, edge-detection, super-resolution

* Block compression for images/video

Machine Learning (LBRNOSG, ...):
* Sparsity as a regularizer to prevent over-fitting

* Learned sparse reps. play a key role in deep-learning

Theoretical Computer Science (SWW13, AGM14, AAIJNT14):

* New algorithms with provable guarantees, in a natural
generative model

14

Generative Model:

* unknown dictionary A
* generate x with support of size k u.a.r., choose non-zero
values independently, observe b = Ax 7

[Spielman, Wang, Wright ‘13]: works for full coln rank A up to
sparsity roughly n”> (hence m < n)

[Arora, Ge, Moitra ‘14]: works for overcomplete, p-incoherent A
up to sparsity roughly n”=¢/pu

[Agarwal et al. ‘14]: works for overcomplete, p-incoherent A
up to sparsity roughly n”/y, via alternating minimization

[Barak, Kelner, Steurer ‘14]: works for overcomplete A up to
sparsity roughly nt, but running time is exponential in accuracy

OUR RESULTS

Suppose k < Vn/u polylog(n) and||A]|< Vn polylog(n)

Suppose A that is column-wise 6-close to A for & < 1/polylog(n)

Theorem [Arora, Ge, Ma, Moitra ‘14]: There is a variant of
the OF-update rule that converges to the true dictionary
at a geometric rate, and uses a polynomial number of samples

All previous algorithms had suboptimal sparsity, worked in
less generality, or were exponential in a natural parameter

Note: k <Vn/2u is a barrier, even for sparse recovery

i.e. if k>Vn/2y, then x is not necessarily the sparsest soln to Ax=b

OUTLINE

Are there efficient, neural algorithms for sparse
coding with provable guarantees?

Part I: The Olshausen-Field Update Rule
* A Non-convex Formulation
* Neural Implementation

* A Generative Model; Prior Work

Part Il: A New Update Rule
* Online, Local and Hebbian with Provable Guarantees
* Connections to Approximate Gradient Descent

* Further Extensions

17

A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATbt)

q
(2) 3 < /A\\ + N Z(b(i) _/A’)Z(i))sgn(;(\(i))T

=1

A NEW UPDATE RULE

Alternate between the following steps (size g batches):

(1) XO = threshold(ATb®M) (zero out small entries)

q
(2) A< A+ Z(b(‘) — Ax)sgn(XM)T

=1

A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATht)

g
(2) A €« A + N Z(b(‘) — AXN)sgn(xM)T

=1

{The samples arrive online J

A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATht)

q
2) A<« A +n Z(b(‘) _ AR)sgn(RM)T

=1

{The samples arrive online J

In contrast, previous (provable) algorithms might need to
compute a new estimate from scratch, when new samples arrive

21

A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATbt)

q
(2) ﬁ < /A\\ + N Z(b(i) _/A’)Z(i))sgn(;(\(i))T

=1

A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATht)

g
(2) A €« A + N Z(b(‘) — AXN)sgn(xM)T

=1

{The computation is local J

A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATbt)

q
2) A<« A +n Z(b(‘) _ AR)sgn(RM)T

=1

{The computation is local J

In particular, the output is a thresholded, weighted sum of
activations

24

A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATbt)

q
(2) ﬁ < /A\\ + N Z(b(i) _/A’)Z(i))sgn(;(\(i))T

=1

A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATht)

g
(2) A €« A + N Z(b(‘) — AXN)sgn(xM)T

=1

[The update rule is explicitly Hebbiar@

26

A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATht)

g
(2) A €« A + N Z(b(‘) — AXN)sgn(xM)T

=1

{The update rule is explicitly Hebbian J

(" 7,
neurons that fire together, wire together

27

A NEW UPDATE RULE
Alternate between the following steps (size g batches):

(1) X0 = threshold(ATht)

g
(2) A €« A + N Z(b(‘) — AXN)sgn(xM)T

=1

{The update rule is explicitly Hebbian J

28

A NEW UPDATE RULE

Alternate between the following steps (size g batches):

(1) X0 = threshold(ATbt)

q
2) A<« A +n Z(b(‘) _ AR)sgn(RM)T

=1

{The update rule is explicitly Hebbian J

The update to a weight /Ai,j is the product of the activations at
the residual layer and the decoding layer

29

WHAT IS NEURALLY PLAUSIBLE, ANYWAYS?

Our update rule (essentially) inherits a neural implementation
from [Olshausen, Field]

However there are many competing theories for what
constitutes a plausible neural implementation

e.g. nonnegative outputs, no bidirectional links, etc...

But ours is online, local and Hebbian, all of which are basic
properties to require

optimal solutions to highly non-trivial algorithmic problems!

30

[The surprise is that such simple building blocks can find globally}

APPROXIMATE GRADIENT DESCENT

We give a general framework for designing and analyzing
iterative algorithms for sparse coding

The usual approach is to think of them as trying to minimize
a non-convex function:

A A A2
min E(A,X)=HB 'AXHF

A, coln-sparse X

31

APPROXIMATE GRADIENT DESCENT

We give a general framework for designing and analyzing
iterative algorithms for sparse coding

The usual approach is to think of them as trying to minimize
a non-convex function:

min E(,) ‘B F

A A, coln-sparse X /’ ‘\

colns are b'V’s colns are X’s

2

32

APPROXIMATE GRADIENT DESCENT

We give a general framework for designing and analyzing
iterative algorithms for sparse coding

How about thinking of them as trying to minimize an unknown,
convex function?

A A 2
min E(A, X)=||B - Ax||’
A

Now the function is strongly convex, and has a global optimum
that can be reached by gradient descent!

New Goal: Prove that (with high probability) the step (2)
approximates the gradient of this function

33

CONDITIONS FOR CONVERGENCE

Consider the following general setup:
optimal solution: z°
update: z5*'1=z°—ng°

Definition: g° is (a, B, €.)-correlated with z" if for all s:
2
g5z 2 a‘ zS—z*” + B ‘

Theorem: If g is (a, B, €,)-correlated with z*, then

2
- €,

gS

2 2 Max, €
‘ZS-Z*H < (1-2an)s zo-z*H + s s

a
This follows immediately from the usual proof...

(1) X0 = threshold(ATb)

Decoding Lemma: If A is 1/polylog(n)-close to A and IIA\— All <2,
then decoding recovers the signs correctly (whp)

~ A Q9 AA A
(2) A €<— A + N (b(l) _Ax(l))sgn(x('))T
=1

Key Lemma: Expectation of (the column-wise) update rule is

KJ&— /Aj + & (I - /A\\JT A+ EER[KR/ART]A,- + error
i

A i
Aj- A, systemic bias

where R = supp(x)\], if decoding recovers the correct signs

Auxiliary Lemma: 1A - All < 2, remains true throughout
if n is small enough and q is large enough

Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x.

g = E[(b — AX)sgn(X) 1] + E[(b — Ax)sgn (X)) 1]

36

Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x.

g, = E[(b— AX)sgn(X)) 1;] £

37

Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x.

g, = E[(b— AX)sgn(x)) 1;] £

38

Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x.

g =E[(b— ﬂthreshold(ﬂTb)) sgn(x;) 1] £ ¢

39

Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x. Let S = supp(x).

g = E[(b— AJAdb) sgn(x) 1,] £ ¢

40

Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x. Let S = supp(x).

g = E[(b— AJAb) sgn(x,)]
— E[(b — A¢Ab) sgn(x;) 1z]

41

Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x. Let S = supp(x).

g = E[(I — AAD)Ax sgn(x))] £ T

42

Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x. Let S = supp(x).

g = E[(I — AAD)Ax sgn(x))] £ T
= EE, [[(1 - AADAX sgn(x)]|S] £ T

43

Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x. Let S = supp(x).

g = E[(I — AAD)Ax sgn(x))] £ T
= EE, [[(1 - AADAX sgn(x)]|S] £ T
= p, E[(1 - AADA] £

where p; = E[x; sgn(x;) [j in S].

44

Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x. Let S = supp(x).

g = E[(I — AAD)Ax sgn(x))] £ T
= EE, [[(1 - AADAX sgn(x)]|S] £ T
= p, E[(1 - AADA] £

where p; = E[x; sgn(x;)[j in S]. Let q; = Pr[jin S], g;; = Pr[i,j in S]

45

Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x. Let S = supp(x).

g = E[(I — AAD)Ax sgn(x))] £ T
= EE, [[(1 - AADAX sgn(x)]|S] £ T
= B; Es[(1- /AS/A\‘E)AJ'] =

where p; = E[x; sgn(x;)[j in S]. Let g, = Pr[jin S], g;; = Pr[i,j in S] then

=p;q; (1 - f&jﬂ})Aj +p, /A_jdiag(qi,j)IA_Tj At

46

Proof: Let { denote any vector whose norm is negligible (say, n-®(1)),
g; = E[(b — Ax)sgn(x;)]

is the expected update to ,/A\j. Let 1; be the indicator of the event
that decoding recovers the signs of x. Let S = supp(x).

g = E[(I — AAD)Ax sgn(x))] £ T
= EE, [[(1 - AADAX sgn(x)]|S] £ T
= p, E[(1 - AADA] £

where p; = E[x; sgn(x;)[j in S]. Let g, = Pr[jin S], g;; = Pr[i,j in S] then

= P]; (I - '/A\‘j'/A\‘JT)Aj + P /A-jdiag(qi,j)lp\‘-—g Aj +(-

47

AN INITIALIZATION PROCEDURE

We give an initialization algorithm that outputs A A that is
column-wise 6-close to A for 6 < 1/polylog(n), IA-All <2

Repeat: (1) Choose samplesb, b’

q
(2) SetM,, = %Z (bTb) (b’Tb() b (b)T
=1

k k
(3) If}\l(Mb,b’) > ? and)\2 << nmgm

output top eigenvector

48

AN INITIALIZATION PROCEDURE

We give an initialization algorithm that outputs A A that is
column-wise 6-close to A for 6 < 1/polylog(n), IA-All <2

Repeat: (1) Choose samplesb, b’

q
(2) SetM,, = %Z (bTb) (b’Tb() b (b)T
=1

k k
(3) If}\l(Mb,b’) > ? and)\2 << nmgm

output top eigenvector

Key Lemma: If Ax =b and Ax’ = b’, then condition (3) is satisfied
if and only if supp(x)() supp(x’) = {j} in which case, the top
eigenvector is 6-close to A,

49

DISCUSSION

Our initialization gets us to 6 < 1/polylog(n), can be neurally
implemented with Oja’s Rule

Earlier analyses of alternating minimization for 6 < 1/poly(n) in
[Arora, Ge, Moitra ‘14] and [Agarwal et al '14]

/\
However, in those settings A and A are so close that the objective
function is essentially convex

{We show that it converges even from mild starting conditions }

As a result, our bounds improve on existing algorithms in terms
of running time, sample complexity and sparsity (all but SOS)

50

FURTHER RESULTS

Adjusting an iterative alg. can have subtle effects on its behavior

We can use our framework to systematically design/analyze
new update rules

E.g. we can remove the systemic bias, by carefully projecting
out along the direction being updated

(1) X0 = threshold(Clb))

whereC [Projat (A1) Proy\L(Az) A .Projat (]

A A q A .
(2) A<= A+ n (b") —ﬁjxf'))sgn&j('))T
=1

Any Questions?

Summary:

* Online, local and Hebbian algorithms for sparse
coding that find a globally optimal solution (whp)

* Introduced a framework for analyzing iterative
algorithms by thinking of them as trying to minimize
an unknown, convex function

* The key is working with a generative model

* |s computational intractability really a barrier to a
rigorous theory of neural computation?

52

MIT OpenCourseWare
http://ocw.mit.edu

18.409 Algorithmic Aspects of Machine Learning
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

