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Abstract

A conic linear system is a system of the form

�FPd�� Ax � b

x � CX �

where A � X �� Y is a linear operator between n� and m�dimensional linear spaces
X and Y � b � Y � and CX � X is a closed convex cone� The data for the system is
d � �A� b�� This system is �well�posed� to the extent that �small� changes in the data
d � �A� b� do not alter the status of the system �the system remains feasible or not��
Renegar de	ned the �distance to ill�posedness�� ��d�� to be the smallest change in the
data 
d � �
A�
b� needed to create a data instance d�
d that is �ill�posed�� i�e�� lies
in the intersection of the closures of sets of feasible and infeasible instances d� � �A�� b��
of
�
FP���

�
� Renegar also de	ned the �condition number� C�d� of the data instance d as

a scale�invariant reciprocal of ��d�� C�d�
�
� kdk

��d� �

In this paper we develop an elementary algorithm that computes a solution of �FPd�
when it is feasible� or demonstrates that �FPd� has no solution by computing a solution
of the alternative system� The algorithm is based on a generalization of von Neumann�s
algorithm for solving linear inequalities� The number of iterations of the algorithm is
essentially bounded by

O
�
c C�d�� ln�C�d��

�
where the constant c depends only on the properties of the cone CX and is independent
of data d� Each iteration of the algorithm performs a small number of matrix�vector
and vector�vector multiplications �that take full advantage of the sparsity of the original
data� plus a small number of other operations involving the cone CX � The algorithm
is �elementary� in the sense that it performs only a few relatively simple mathematical
operations at each iterations�

The solution �x of the system �FPd� generated by the algorithm has the property of
being �reliable� in the sense that the distance from �x to the boundary of the cone CX �
dist��x� �CX�� and the size of the solution� k�xk� satisfy the following inequalities�

k�xk � c�C�d�� dist��x� �CX� � c�
�

C�d�
� and

k�xk

dist��x� �CX�
� c�C�d��

where c�� c�� c� are constants that depend only on properties of the cone CX and are
independent of the data d �with analogous results for the alternative system when the
system �FPd� is infeasible��
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� Introduction

The subject of this paper is the development of an algorithm for solving a convex
feasibility problem in conic linear form�

	FPd
 Ax � b
x � CX �

	�


where A � X �� Y is a linear operator between the 	�nite
 ndimensional normed linear
vector space X and the 	�nite
 mdimensional normed linear vector space Y 	with norms
kxk for x � X and kyk for y � Y � respectively
� CX � X is a closed convex cone� and
b � Y � We denote by d � 	A� b
 the �data� for the problem 	FPd
� That is� the cone
CX is regarded as �xed and given� and the data for the problem is the linear operator A
together with the vector b� We denote the set of solutions of 	FPd
 as Xd to emphasize the
dependence on the data d� i�e��

Xd � fx � X � Ax � b� x � CXg�

The problem 	FPd
 is a very general format for studying the feasible regions of convex
optimization problems� and has recently received much attention in the analysis of interior
point methods� see Nesterov and Nemirovskii ���� and Renegar ���� and ����� among others�
wherein interiorpoint methods for 	FPd
 are shown to be theoretically e�cient�

Our interest lies in instances of 	FPd
 where an interiorpoint or other theoretically
e�cient algorithm may not be an attractive choice for solving 	FPd
� Such instances might
arise when n is extremely large� and�or when A is a real matrix whose sparsity structure is
incompatible with e�cient computation in interiorpoint methods� for example�

We develop an algorithm called �algorithm CLS� 	for Conic Linear System
 that either
computes a solution of the system 	FPd
� or demonstrates that 	FPd
 is infeasible by com
puting a solution of an alternative 	i�e�� dual
 system� In both cases the solution provided
by algorithm CLS is �reliable� in a sense that will be described shortly�

Algorithm CLS is based on a generalization of the algorithm of von Neumann studied
by Dantzig ��� and ���� and is part of a large class of �elementary� algorithms for �nding a
point in a suitably described convex set� such as re�ection algorithms for linear inequality
systems 	see ���� ����� ���� ����
� the �perceptron� algorithm ���� ��� ��� ���� and other so
called �rowaction� methods� When applied to linear inequality systems� these elementary
algorithms share the following desirable properties� namely� the work per iteration is ex
tremely low 	typically involving only a few matrixvector or vectorvector multiplications
�
and the algorithms fully exploit the sparsity of the original data at each iteration� Also� the
performance of these algorithms can be quite competitive when applied to certain very large
problems with very sparse data� see ���� We refer to these algorithms as �elementary� in
that the algorithms do not involve particularly sophisticated mathematics at each iteration�
nor do the algorithms perform particularly sophisticated computations at each iteration�
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and in some sense these algorithms are all very unsophisticated as a result 	especially com
pared to an interiorpoint algorithm or a volumereducing cuttingplane algorithm such as
the ellipsoid algorithm
�

In analyzing the complexity of algorithm CLS� we adopt the relatively new concept of the
condition number C	d
 of 	FPd
 developed by Renegar in a series of papers ���� ��� ���� C	d

is essentially a scale invariant reciprocal of the smallest data perturbation �d � 	�A��b

for which the system 	FPd��d
 changes its feasibility status� The problem 	FPd
 is well
conditioned to the extent that C	d
 is small� when the problem 	FPd
 is �illposed� 	i�e��
arbitrarily small perturbations of the data can yield both feasible and infeasible problem
instances
� then C	d
 � ��� The condition number C	d
 is connected to sizes of solutions
and deformations of Xd under data perturbations ����� certain geometric properties of Xd

����� and the complexity of algorithms for computing solutions of 	FPd
 ����� ����� 	The
concepts underlying C	d
 will be reviewed in detail at the end of this section�
 We show in
Section � that algorithm CLS will compute a feasible solution of 	FPd
 in

O	�c�C	d
� ln	C	d


 	�


iterations when 	FPd
 is feasible� or will demonstrate infeasibility in

O	�c�C	d
�
 	�


iterations when 	FPd
 is infeasible� The scalar quantities �c� and �c� are constants that depend
only on the simple notion of the �width� of the cones CX and C�

X and are independent of
the data d� but may depend on the dimension n�

As alluded to above� algorithm CLS will compute a reliable solution of the system 	FPd
�
or will demonstrate that 	FPd
 is infeasible by computing a reliable solution of an alternative
system� We consider a solution �x of the system 	FPd
 to be reliable if� roughly speaking� 	i

the distance from �x to the boundary of the cone CX � dist	�x� �CX
� is not excessively small�

	ii
 the norm of the solution k�xk is not excessively large� and 	iii
 the ratio k�xk
dist��x��CX� is

not excessively large� A reliable solution of the alternative system is de�ned similarly� The
sense of what is meant by �excessive� is measured using the condition number C	d
� The
importance of computing a reliable solution can be motivated by considerations of �nite
precision computations� Suppose� for example� that a solution �x of the problem 	FPd

	computed as an output of an algorithm involving iterates x�� � � � � xk � �x� and�or used
as input to another algorithm
 has the property that dist	�x� �CX
 is very small� Then
the numerical precision requirements for checking or guaranteeing feasibility of iterates will
necessarily be large� Similar remarks hold for the case when k�xk and�or the ratio k�xk

dist��x��CX�
is very large�

In ���� it is shown that when the system 	FPd
 is feasible� there exists a point �x � Xd

such that

k�xk � c�C	d
� dist	�x� �CX
 � c�
�

C	d
 � and
k�xk

dist	�x� �CX

� c�C	d
� 	�


where the scalar quantities c�� c�� and c� depend only on the width of the cone CX � and
are independent of the data d of the problem 	FPd
� but may depend on the dimension n�



Computing a Reliable Solution of a Conic Linear System �

Algorithm CLS will compute a solution �x with bounds of the same order as 	�
� which lends
credence to the term �reliable� solution� Similar remarks hold for the case when 	FPd
 is
infeasible�

It is interesting to compare the complexity bounds of algorithm CLS in 	�
 and 	�
 to
that of other algorithms for solving 	FPd
� In ����� Renegar presented an incredibly general
interiorpoint 	i�e�� barrier
 algorithm for resolving 	FPd
 and showed� roughly speaking�
that the iteration complexity bound of the algorithm depends linearly and only on two
quantities� the barrier parameter for the cone CX � and ln	C	d

� i�e�� the logarithm of the
condition number C	d
� In ���� several e�cient volumereducing cuttingplane algorithms for
resolving 	FPd
 	such as the ellipsoid algorithm
 are shown to have iteration complexity that
is linear in ln	C	d

 and polynomial in the dimension n� Both the interiorpoint algorithm
and the ellipsoid algorithm have an iteration complexity bound that is linear in ln	C	d

�
and so are e�cient algorithms in a sense de�ned by Renegar ����� Both the interiorpoint
algorithm and the ellipsoid algorithm are also very sophisticated algorithms� in contrast with
the elementary algorithm CLS� The interiorpoint algorithm makes implicit and explicit use
of information from a selfconcordant barrier at each iteration� and uses this information
in the computation of the next iterate by solving for the Newton step along the central
trajectory� The work per iteration is O	n�
 operations to compute the Newton step� The
ellipsoid algorithm makes use of a separation oracle for the cone CX in order to perform a
special space dilation at each iteration� and the work per iteration of the ellipsoid algorithm
is O	n�
 operations� Intuition strongly suggests that the sophistication of these methods
is responsible for their excellent computational complexity� In contrast� the elementary
algorithm CLS relies only on relatively simple assumptions regarding the ability to work
conveniently with the cone CX 	discussed in detail in Section �
 and does not perform
any sophisticated mathematics at each iteration� Consequently one would not expect its
theoretical complexity to be nearly as good as an interiorpoint algorithm or the ellipsoid
algorithm� However� because the work per iteration of algorithm CLS is low� and each
iteration fully exploits the sparsity of the original data� it is reasonable to expect that
algorithm CLS could outperform more theoreticallye�cient algorithms on large structured
problems that are wellconditioned�

In this vein� recent literature contains several algorithms of similar nature to the ele
mentary algorithms discussed above� for obtaining approximate solutions of certain struc
tured convex optimization problems� For example� Grigoriadis and Khachiyan ���� ��� and
Villavicencio and Grigoriadis ���� consider algorithms for block angular resource sharing
problems� Plotkin� Shmoys� and Tardos ���� and Karger and Plotkin ���� consider algorithms
for fractional packing problems� and Bienstock ��� and Goldberg et al� ���� discuss results
of computational experiments with these methods� The many applications of such prob
lems include multicommodity network �ows� scheduling� combinatorial optimization� etc�
The dimensionality of such structured problems arising in practice is often prohibitively
large for theoretically e�cient algorithms such as interiorpoint methods to be e�ective�
However� these problems are typically sparse and structured� which allows for e�cient im
plementation and good performance of Lagrangiandecomposition based algorithms 	see� for
example� ����
� which o�er a general framework for rowaction methods� These algorithms
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can also be considered �elementary� in the exact same sense as the rowaction algorithms
mentioned earlier� i�e�� they do not perform any sophisticated mathematics at each iteration
and they fully exploit the sparsity of the original data� The complexity analysis as well as
the practical computational experience of this body of literature lends more credence to the
practical viability of elementary algorithms in general� when applied to largescale� sparse
	wellstructured
� and wellconditioned problems�

An outline of the paper is as follows� The remainder of this introductory section dis
cusses the condition number C	d
 of the system 	FPd
� Section � contains further notation�
de�nitions� assumptions� and preliminary results� Section � presents a generalization of the
von Neumann algorithm 	appropriately called algorithm GVNA
 that can be applied to
conic linear systems in a special compact form 	i�e� with a compactness constraint added
�
We analyze the properties of the iterates of algorithm GVNA under di�erent termination
criteria in Lemmas ��� �� and ��� Section � presents the development of algorithms HCI
	Homogeneous Conic Inequalities
 and HCE 	Homogeneous Conic Equalities
 for resolving
two essential types of homogeneous conic linear systems� Both algorithms HCI and HCE
consist of calls to algorithm GVNA applied to appropriate transformations of the homoge
neous systems at hand� Finally� in Section �� we present algorithm CLS for the conic linear
system 	FPd
� Algorithm CLS is a combination of algorithms HCI and HCE� Theorem ��
contains the main complexity result for algorithm CLS� and is the main result of this paper�
Section � contains some discussion�

We now present the development of the concepts of condition numbers and data pertur
bation for 	FPd
 in detail� Recall that d � 	A� b
 is the data for the problem 	FPd
� The
space of all data d � 	A� b
 for 	FPd
 is denoted by D�

D � fd � 	A� b
 � A � L	X�Y 
� b � Y g�

For d � 	A� b
 � D we de�ne the product norm on the cartesian product L	X�Y 
�Y to be

kdk � k	A� b
k � maxfkAk� kbkg 	�


where kbk is the norm speci�ed for Y and kAk is the operator norm� namely

kAk � maxfkAxk � kxk � �g� 	�


We de�ne

F � f	A� b
 � D � there exists x satisfying Ax � b� x � CXg� 	�


Then F corresponds to those data instances d � 	A� b
 for which 	FPd
 is feasible� The
complement of F is denoted by FC � and so FC consists precisely of those data instances
d � 	A� b
 for which 	FPd
 is infeasible�

The boundary of F and of FC is precisely the set

B � �F � �FC � cl	F
 � cl	FC
 	�
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where �S denotes the boundary and cl	S
 denotes the closure of a set S� Note that if
d � 	A� b
 � B� then 	FPd
 is illposed in the sense that arbitrarily small changes in the
data d � 	A� b
 can yield instances of 	FPd
 that are feasible� as well as instances of 	FPd

that are infeasible� Also� note that B 	� 
� since d � 	�� �
 � B�

For a data instance d � 	A� b
 � D� the distance to ill�posedness is de�ned to be�

�	d
 � inffk�dk � d��d � Bg�

see ����� ����� ����� and so �	d
 is the distance of the data instance d � 	A� b
 to the set B of
illposed instances for the problem 	FPd
� It is straightforward to show that

�	d
 �

�
inffkd� �dk � �d � FCg if d � F �
inffkd� �dk � �d � Fg if d � FC �

	�


so that we could also de�ne �	d
 by employing 	�
� The condition number C	d
 of the data
instance d is de�ned to be�

C	d
 � kdk
�	d


	��


when �	d
 � �� and C	d
 � � when �	d
 � �� The condition number C	d
 can be viewed
as a scaleinvariant reciprocal of �	d
� as it is elementary to demonstrate that C	d
 � C	�d

for any positive scalar �� Observe that since �d � 	 �A��b
 � 	�� �
 � B� then for any d �� B we
have kdk � kd� �dk � �	d
� whereby C	d
 � �� The value of C	d
 is a measure of the relative
conditioning of the data instance d� Further analysis of the distance to illposedness has
been presented in ����� Vera ���� ��� ��� ���� Filipowski ���� ���� Nunez and Freund �����
Pe�na ���� ��� and Pe�na and Renegar �����

� Preliminaries� Assumptions� and Further Notation

We will work in the setup of �nite dimensional normed linear vector spaces� Both X
and Y are normed linear spaces of �nite dimension n and m� respectively� endowed with
norms kxk for x � X and kyk for y � Y � For �x � X� let B	�x� r
 denote the ball centered at
�x with radius r� i�e��

B	�x� r
 � fx � X � kx� �xk � rg�
and de�ne B	�y� r
 analogously for �y � Y �

We associate with X and Y the dual spaces X� and Y � of linear functionals de�ned on
X and Y � respectively� and whose 	dual
 norms are denoted by kuk� for u � X� and kwk�
for w � Y �� Let c � X�� In order to maintain consistency with standard linear algebra
notation in mathematical programming� we will consider c to be a column vector in the
space X� and will denote the linear function c	x
 by ctx� Similarly� for A � L	X�Y 
 and
f � Y �� we denote A	x
 by Ax and f	y
 by f ty� We denote the adjoint of A by At�
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If C is a convex cone in X� C� will denote the dual convex cone de�ned by

C� � fz � X� � ztx � � for any x � Cg�

We will say that a cone C is regular if C is a closed convex cone� has a nonempty interior�
and is pointed 	i�e�� contains no line
�

Remark � If C is a closed convex cone� then C is regular if and only if C� is regular�

We denote the set of real numbers by � and the set of nonnegative real numbers by ���

The �strong alternative� system of 	FPd
 is�

	SAd
 Ats � C�
X

bts � ��
	��


A separating hyperplane argument yields the following partial theorem of the alternative
regarding the feasibility of the system 	FPd
�

Proposition � If �SAd� is feasible� then �FPd� is infeasible� If �FPd� is infeasible� then
the following �weak alternative� system ���� is feasible	

Ats � C�
X

bts � �
s 	� ��

	��


When the system 	FPd
 is wellposed� we have the following strong theorem of the
alternative�

Proposition � Suppose �	d
 � �� Then exactly one of the systems �FPd� and �SAd� is

feasible�

We denote the set of solutions of 	SAd
 as Ad� i�e��

Ad � fs � Y � � Ats � C�
X � b

ts � �g�

Similarly to solutions of 	FPd
� we consider a solution �s of the system 	SAd
 to be reliable

if the ratio k�sk�
dist��s��Ad�

is not excessively large� 	Because the system 	��
 is homogeneous�

it makes little sense to bound k�sk� from above or to bound dist	�s� �Ad
 from below� as all
solutions can be scaled by any positive quantity�
 In ���� it is shown that when the system
	FPd
 is infeasible� there exists a point �s � Ad such that

k�sk�
dist	�s� �Ad


� c�C	d
� 	��
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where the scalar quantity c� depends only on the width of the cone C�
X � 	The concept of

the width of a cone will be de�ned shortly�
 Algorithm CLS will compute a solution �s with
a bound of the same order as 	��
�

We now recall some facts about norms� Given a �nite dimensional linear vector space
X endowed with a norm kxk for x � X� the dual norm induced on the space X� is denoted
by kzk� for z � X�� and is de�ned as�

kzk� � maxfztx � kxk � �g� 	��


and the H older inequality ztx � kzk�kxk follows easily from this de�nition� We also point
out that if A � uvt� then it is easy to derive that kAk � kvk�kuk�

Let C be a regular cone in the normed linear vector space X� We will use the following
de�nition of the width of C�

De�nition � If C is a regular cone in the normed linear vector space X� the width of C is

given by	

�C � max

�
r

kxk � B	x� r
 � C

�
�

We remark that �C measures the maximum ratio of the radius to the norm of the center of
an inscribed ball in C� and so larger values of �C correspond to an intuitive notion of greater
width of C� Note that �C � 	�� ��� since C has a nonempty interior and C is pointed� and
�C is attained for some 	�x� �r
 as well as along the ray 	��x� ��r
 for all � � �� By choosing
the value of � appropriately� we can �nd u � C such that kuk � � and �C is attained for
	u� �C
�

Closely related to the width is the notion of the coe
cient of linearity for a cone C�

De�nition � If C is a regular cone in the normed linear vector space X� the coe
cient of

linearity for the cone C is given by	

	C � sup inf uTx
u � X� x � C
kuk� � � kxk � ��

	��


The coe�cient of linearity 	C measures the extent to which the norm kxk can be approxi
mated by a linear function over the cone C� We have the following properties of 	C �

Remark � �see 	��
� � � 	C � �� There exists �u � intC� such that k�uk� � � and

	C � minf�utx � x � C� kxk � �g� For any x � C� 	Ckxk � �utx � kxk� The set

fx � C � �utx � �g is a bounded and closed convex set�

In light of Remark � we refer to �u as the norm linearization vector for the cone C� The
following proposition shows that the width of C is equal to the coe�cient of linearity for
C��
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Proposition � �see 	��
� Suppose that C is a regular cone in the normed linear vector
space X� and let �C denote the width of C and let 	C� denote the coe
cient of linearity for

C�� Then �C � 	C� � Moreover� �C is attained for 	u� �C
� where u is the norm linearization

vector for the cone C��

We now pause to illustrate the above notions on two relevant instances of the cone C�
namely the nonnegative orthant �n

� and the positive semide�nite cone Sk�k� � We �rst

consider the nonnegative orthant� Let X � �n and C � �n
�
�
� fx � �n � x � �g� Then we

can identify X� with X and in so doing� C� � �n
� as well� If kxk is given by the L� norm

kxk �
Pn

j	� jxjj� then note that kxk � etx for all x � C 	where e is the vector of ones
�
whereby the coe�cient of linearity is 	C � � and �u � e� If instead of the L� norm� the
norm kxk is the Lp norm de�ned by�

kxkp �
�
� nX
j	�

jxj jp
�
A

��p

�

for p � �� then for x � C it is straightforward to show that �u �

�
n
�
�
p
��
�	

e and the

coe�cient of linearity is 	C � n
�
�
p
��
�
� Also� by setting x � e� it is straightforward to show

that the width is �C � n�
�
p �

Now consider the positive semide�nite cone� which has been shown to be of enormous
importance in mathematical programming 	see Alizadeh ��� and Nesterov and Nemirovskii

����
� Let X � Sk�k denote the set of real k � k symmetric matrices� and so n � k�k���
� �

and let C � Sk�k�
�
�
n
x � Sk�k � x � �

o
� where x � � is the L owner partial ordering� i�e��

x � w if x�w is a positive semide�nite symmetric matrix� Then C is a closed convex cone�
We can identify X� with X� and in so doing it is elementary to derive that C� � Sk�k� � i�e��
C is selfdual� For x � X� let 
	x
 denote the kvector of ordered eigenvalues of x� For any
p � ����
� let the norm of x be de�ned by

kxk � kxkp �
�
� kX
j	�

j
j	x
jp
�
A

�
p

�

	see ����� for example� for a proof that kxkp is a norm
� When p � �� kxk� is the sum of

the absolute values of the eigenvalues of x� Therefore� when x � C� kxk� � tr	x
 �
kP
i	�

xii

where xij is the ijth entry of the real matrix x 	and tr	x
 is the trace of x
� and so kxk� is a
linear function on C� Therefore� when p � �� we have �u � I and the coe�cient of linearity

is 	C � �� When p � �� it is easy to show that �u �

�
k
�
�
p
��
�	

I has k�uk� � k�ukq � � 	where

��p � ��q � �
 and that 	C � k
�
�
p
��
�
� Also� it is easy to show by setting x � I that the

width is �C � k
� �
p �
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We will make the following assumption throughout the paper concerning the cone CX

and the norm on the space Y �

Assumption � CX � X is a regular cone� The coe
cient of linearity 	 for the cone CX �

and the width � of the cone CX � together with corresponding norm linearization vectors �f
�for the cone CX� and f �for the cone C�

X� are known and given� For y � Y � kyk � kyk��

SupposeC is a regular cone in the normed vector spaceX� and �u is the norm linearization
vector for C� Given any linear function ctx de�ned on x � X� we de�ne the following conic
section optimization problem�

	CSOPC
 min ctx
x
s�t� x � C

�utx � ��

	��


Let TC denote an upper bound on the number of operations needed to solve 	CSOPC
�

For the algorithm CLS developed in this paper� we presume that we can work con
veniently with the cone CX in that we can solve 	CSOPCX 
 easily� i�e�� that TCX is not
excessive� for otherwise the algorithm will not be very e�cient�

We now pause to illustrate how 	CSOPC
 is easily solved for two relevant instances of
the cone C� namely �n

� and Sk�k� � We �rst consider �n
�� As discussed above� when kxk is

given by Lp norm with p � �� the norm approximation vector �u is a positive multiple of
the vector e� Therefore� for any c� the problem 	CSOPC
 is simply the problem of �nding
the index of the smallest element of the vector c� so that the solution of 	CSOPC
 is easily
computed as xc � ei� where i � argminfcj � j � �� � � � � ng� Thus TC � n�

We now consider Sk�k� � As discussed above� when kxk is given by

kxk � kxkp �
�
� nX
j	�

j
j	x
jp
�
A

�
p

with p � �� the norm approximation vector �u is a positive multiple of the matrix I� For
any c � Sk�k� the problem 	CSOPC
 corresponds to the problem of �nding the normalized
eigenvector corresponding to the smallest eigenvalue of the matrix c� i�e�� 	CSOPC
 is a min
imum eigenvalue problem and is solvable to within machine tolerance in O	k�
 operations
in practice 	though not in theory
�

Solving 	CSOP
 for the cartesian product of two cones is easy if 	CSOP
 is easy to solve

for each of the two cones� suppose that X � V �W with norm kxk � k	v� w
k �
� kvk�kwk�

and C � CV �CW where CV � V and CW �W are regular cones with norm linearization
vectors �uV and �uW � respectively� Then the norm linearization vector for the cone C is
�u � 	�uV � �uW 
� 	C � minf	CV � 	CW g� and TC � TCV � TCW �O	�
�
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We end this section with the following lemmas which give a precise mathematical char
acterization of the problem of computing the distance from a given point to the boundary
of a given convex set� Let S be a closed convex set in �m and let f � �m be given� The
distance from f to the boundary of S is de�ned as�

r � min
z
fjjf � zjj � z � �Sg� 	��


Lemma  Let r be de�ned by ����� Suppose f � S� Then

r � min max �
v z

jjvjj � � s�t� f � z � �v � �
z � S�

Lemma � Let r be de�ned by ����� Suppose f 	� S� Then

r � min jjf � zjj
z
s�t� z � S�

� A Generalized Von Neumann Algorithm for a Conic Linear

System in Compact Form

In this section we consider a generalization of the algorithm of von Neumann studied
by Dantzig in ��� and ���� see also ���� We will work with a conic linear system of the form�

	P
 Mx � g
x � C

�utx � ��
	��


where C � X is a closed convex cone in the 	�nite
 ndimensional normed linear vector
space X� and g � Y where Y is the 	�nite
mdimensional linear vector space with Euclidean
norm kyk � kyk�� and M � L	X�Y 
� We assume that C is a regular cone� and the
norm linearization vector �u of Remark � is known and given� 	The original algorithm of
von Neumann presented and analyzed by Dantzig in ��� and ��� was developed for the case
when C � �n

� and �u � e�
 We will refer to a system of the form 	��
 as a conic linear
system in compact form� or simply a compactform system�

The �alternative� system to 	P
 of 	��
 is�

	A
 M ts� �u	gts
 � intC�� 	��


and a generalization of Farkas! Lemma yields the following duality result�
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Proposition �� Exactly one of the systems �P� of ��� and �A� of ���� has a solution�

Notice that the feasibility problem 	P
 is equivalent to the following optimization prob
lem�

	OP
 min jjg �Mxjj
x
s�t� x � C

�utx � ��

If 	P
 has a feasible solution� the optimal value of 	OP
 is �� otherwise� the optimal value of
	OP
 is strictly positive� We will say that a point x is �admissible� if it is a feasible point
for 	OP
� i�e�� x � C and �utx � ��

We now describe a generic iteration of our algorithm� At the beginning of the iteration
we have an admissible point �x� Let �v be the �residual� at the point �x� namely� �v � g�M �x�
Notice that k�vk � kg �M �xk is the objective value of 	OP
� The algorithm calls an oracle
to solve the following instance of the conic section optimization problem 	CSOPC
 of 	��
�

min �vt	g �Mp
 � min �vt	g�ut �M
p
p p
s�t� p � C s�t� p � C

�utp � � �utp � ��

	��


where 	��
 is an instance of the 	CSOPC
 with c � 	�M t � �ugt
�v� Let �p be an optimal
solution to the problem 	��
� and �w � g �M �p�

Next� the algorithm checks whether the termination criterion is satis�ed� The termina
tion criterion for the algorithm is given in the form of a function STOP	
� which evaluates
to � exactly when its inputs satisfy some termination criterion 	some relevant examples are
presented after the statement of the algorithm
� If STOP	
 � �� the algorithm concludes
that the appropriate termination criterion is satis�ed and stops�

On the other hand� if STOP	
 � �� the algorithm continues the iteration� The direction
�p� �x turns out to be a direction of potential improvement of the objective function of 	OP
�
The algorithm takes a step in the direction �p� �x with stepsize found by constrained line
search� In particular� let

�x	

 � �x� 
	�p� �x
�

Then the next iterate �x is computed as �x � �x	
�
� where


� � argmin��
����jjg�M �x	

jj � argmin��
����jjg�M	�x�
	�p��x

jj � argmin��
����jj	��

�v�
 �wjj�

Notice that �x is a convex combination of the two admissible points �x and �p and therefore �x
is also admissible� Also� 
� above can be computed as the solution of the following simple
constrained convex quadratic minimization problem�

min
��
����

k	� � 

�v � 
 �wk� � min
��
����


�k�v � �wk� � �
	�vt	 �w � �v

 � k�vk�� 	��
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The closedform solution of the program 	��
 is easily seen to be


� � min

�
�vt	�v � �w


k�v � �wk� � �


� 	��


The formal description of the algorithm is as follows�

Algorithm GVNA

� Data	 	M� g� x�
 	where x� is an arbitrary admissible starting point
�

� Initialization	 The algorithm is initialized with x��

� Iteration k� k � �	 At the start of the iteration we have an admissible point xk�� �
xk�� � C� �utxk�� � ��

Step � Compute vk�� � g �Mxk�� 	the residual
�

Step � Solve the following conic section optimization problem 	CSOPC
�

min 	vk��
t	g �Mp
 � min 	vk��
t	g�ut �M
p
p p
s�t� p � C s�t� p � C

�utp � � �utp � ��

	��


Let pk�� be an optimal solution of the optimization problem 	��
 and wk�� �
g�Mpk��� Evaluate STOP	
� If STOP	
 � �� stop� return appropriate output�

Step � Else� let


k�� � argmin��
����fkg �M	xk�� � 
	pk�� � xk��

kg 	��


� min

�
	vk��
t	vk�� � wk��


kvk�� � wk��k� � �




and
xk � xk�� � 
k��	pk�� � xk��
�

Step � Let k � k � �� go to Step ��

Note that the above description is rather generic� to apply the algorithm we have to specify
the function STOP	
 to be used in Step �� Some examples of function STOP	
 that will
be used in this paper are�

�� STOP�	vk��� wk��
 � � if and only if 	vk��
twk�� � �� If the vectors vk��� wk��

satisfy termination criterion STOP�� then it can be easily veri�ed that the vector
s � � vk��

kvk��k is a solution to the alternative system 	A
 	see Proposition ��
� Therefore�

algorithm GVNA with STOP � STOP� will terminate only if the system 	P
 is
infeasible�
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�� STOP�	vk��� wk��
 � � if and only if 	vk��
twk�� � kvk��k�
� � This termination

criterion is a stronger version of the previous one�

�� STOP�	vk��� wk��� k
 � � if and only if 	vk��
twk�� � � or k � I� where I is some
prespeci�ed integer� This termination criterion is essentially equivalent to STOP��
but it ensures �nite termination 	in no more that I iterations
 regardless of the status
of 	P
�

Proposition �� Suppose vk�� and wk�� are as de�ned in Steps � and � of algorithm

GVNA� If 	vk��
twk�� � �� then �A� has a solutions and so �P� is infeasible�

Proof� By de�nition of wk���

� � 	vk��
twk�� � 	vk��
t	g�ut �M
pk�� � 	vk��
t	g�ut �M
p

for any p � C� �utp � �� Hence� 	g�ut �M
tvk�� � intC� and s � � vk��

kvk��k is a solution of

	A
�

Analogous to the von Neumann algorithm of ��� and ���� we regard algorithm GVNA as
�elementary� in that the algorithm does not rely on particularly sophisticated mathematics
at each iteration 	each iteration must perform a few matrixvector and vectorvector mul
tiplications and solve an instance of 	CSOPC
 
� Furthermore the work per iteration will
be low so long as TC 	the number of operations needed to solve 	CSOPC
 
 is small� A
thorough evaluation of the work per iteration of algorithm GVNA is presented in Remark
�� at the end of this section�

As was mentioned in the discussion preceding the statement of the algorithm� the size
of the residual kvkk is decreased at each iteration� The rate of decrease depends of the
termination criterion used and on the status of the system 	P
� In the rest of this section
we present three lemmas that provide upper bounds on the size of the residual throughout
the algorithm� The �rst result is a generalization of Dantzig!s convergence result ����

Lemma �� �Dantzig 	�
� If algorithm GVNA with STOP � STOP� �or STOP � STOP��
has performed k �complete� iterations� then

kvkk � kM � g�utk
	C
p
k

� 	��


Proof� First note that if x is any admissible point 	i�e�� x � C and �utx � �
� then
kxk � utx

�C
� �

�C
� and so

kg �Mxk � k	g�ut �M
xk � kM � g�utk  kxk � kM � g�utk
	C

� 	��
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From the discussion preceding the formal statement of the algorithm� all iterates of the
algorithm are admissible� so that xk � C and �utxk � � for all k� We prove the bound on
the norm of the residual by induction on k�

For k � ��

kv�k � kg �Mx�k � kM � g�utk
	C

�
kM � g�utk
	C
p
�

�

where the inequality above derives from 	��
�

Next suppose by induction that kvk��k � kM�gutk
�C

p
k��

� At the end of iteration k we have

kvkk � kg �Mxkk � k	�� 
k��
	g �Mxk��
 � 
k��	g �Mpk��
k

� k	�� 
k��
vk�� � 
k��wk��k�
	��


where pk�� and wk�� were computed in Step �� Recall that 
k�� was de�ned in Step � as
the minimizer of k	�� 

vk�� � 
wk��k over all 
 � ��� ��� Therefore� in order to obtain an
upper bound on kvkk� we can substitute any 
 � ��� �� into 	��
� We will substitute 
 � �

k �
Making this substitution� we obtain�

kvkk �
����
����k � �

k
vk�� �

�

k
wk��

����
���� � �

k
k	k � �
vk�� � wk��k� 	��


Squaring 	��
 yields�

kvkk� � �

k�

�
	k � �
�kvk��k� � kwk��k� � �	k � �
	vk��
t	wk��



� 	��


Since the algorithm did not terminate at Step �� the termination criterion was not met� i�e��
in the case STOP � STOP� 	or STOP � STOP�
� 	vk��
twk�� � �� Also� since pk�� is

admissible� kwk��k � kg�Mpk��k � kM�gutk
�C

� Combining these results with the inductive

bound on kvk��k and substituting into 	��
 above yields

kvkk� � �

k�

�
	k � �
�

kM � g�utk�
	�
C	k � �


�
kM � g�utk�

	�
C

�
�

�

k
 kM � g�utk�

	�
C

�

We now develop another line of analysis of the algorithm� which will be used when the
problem 	P
 is �wellposed�� Let

H � HM � fMx � x � C� �utx � �g� 	��


and notice that 	P
 is feasible precisely when g � H� De�ne

r � r	M� g
 � inffkg � hk � h � �Hg 	��


where H is de�ned above in 	��
� As it turns out� the quantity r plays a crucial role in
analyzing the complexity of algorithm GVNA�



Computing a Reliable Solution of a Conic Linear System ��

Observe that r	M� g
 � � precisely when the vector g is on the boundary of the set H�
Thus� when r � �� the problem 	P
 has a feasible solution� but arbitrarily small changes
in the data 	M� g
 can yield instances of 	P
 that have no feasible solution� Therefore
when r � � we can rightfully call the problem 	P
 unstable� or in the language of data
perturbation and condition numbers� the problem 	P
 is �illposed�� We will refer to the
system 	P
 as being �wellposed� when r � ��

Notice that both H � HM and r � r	M� g
 are speci�c to a given data instance 	M� g

of 	P
� i�e�� their de�nitions depend on the problem data M and g� We will� however� often
omit problem data M and g from the notation for H � HM and r � r	M� g
� It should be
clear from the context which data instance we are referring to�

The following proposition gives a useful characterization of the value of r�

Proposition �� Let H � HM and r � r	M� g
 be de�ned as in ���� and ����� If �P� has

a feasible solution� then

r � min max � � min max �
v h v x

kvk � � s�t� g � h� �v � � kvk � � s�t� g �Mx� �v � �
h � H x � C

�utx � ��

	��


If �P� does not have a feasible solution� then

r � min kg � hk � min kg �Mxk
h x
s�t� h � H s�t� x � C

�utx � ��

	��


Proof� The proof is a straightforward consequence of Lemmas � and ��

In light of Proposition ��� when 	P
 has a feasible solution� r	M� g
 can be interpreted
as the radius of the largest ball centered at g and contained in the set H�

We now present an analysis of the performance of algorithm GVNA in terms of the
quantity r � r	M� g
�

Proposition �� Suppose that �P� has a feasible solution� Let vk be the residual at point

xk� and let pk be the direction found in Step � of the algorithm at iteration k � �� Then

	vk
t	g �Mpk
 � r	M� g
kvkk � ��

Proof� If vk � �� the result follows trivially� Suppose vk 	� �� By de�nition of r	M� g
�

there exists a point h � H such that g � h � r	M� g
 vk

kvkk � �� By the de�nition of H�
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h � Mx for some admissible point x� It follows that

g �Mx � �r	M� g

vk

kvkk �

Recall that pk � argminpf	vk
t	g �Mp
 � p � C� �utp � �g� Therefore�

	vk
t	g �Mpk
 � 	vk
t	g �Mx
 � �	vk
tr	M� g

vk

kvkk � �r	M� g
kvkk�

Therefore
	vk
t	g �Mpk
 � r	M� g
kvkk � ��

Proposition �� is used to prove the following linear convergence rate for algorithm
GVNA�

Lemma �� Suppose the system �P� is feasible� and that r	M� g
 � �� If GVNA with

STOP � STOP� �or STOP � STOP�� has performed k �complete� iterations� then

kvkk � kv�ke�
k
�

�
�Cr�M�g�

kM�g�utk

�
� 	��


Proof� Let �x be the current iterate of GVNA� Furthermore� let �v � g�M �x be the residual
at the point �x� �p be the solution of the problem 	CSOPC
� and �w � g �M �p� Suppose that
the algorithm has not terminated at the current iteration� and �x � �x�
�	�p� �x
 is the next
iterate and �v is the residual at �x� Then

k�vk� � k	�� 
�
�v � 
� �wk� � 	
�
�k�v � �wk� � �
��vt	 �w � �v
 � k�vk�� 	��


where 
� � min
n
vt�v� w�
kv� wk� � �

o
� Since the algorithm has not terminated at Step �� the

termination criterion has not been satis�ed� i�e�� in the case of STOP � STOP� 	or
STOP � STOP�
� �vt �w � �� Therefore

�vt	�v � �w
 � k�vk� � �vt �w � 	k �wk� � �vt �w
 � k�v � �wk��

so that vt�v� w�
kv� wk� � � and 
� � vt�v� w�

kv� wk� � Substituting this value of 
� into 	��
 yields�

k�vk� �
k�vk�k �wk� � 	�vt �w
�

k�v � �wk� � 	��


Recall from Proposition �� that �vt �w � �r	M� g
k�vk� Thus� k�vk�	k �wk� � r	M� g
�
 is an
upper bound on the numerator of 	��
� Also� k�v � �wk� � k�vk� � k �wk� � ��vt �w � k �wk��
Substituting this into 	��
 yields

k�vk� � k�vk�	k �wk� � r	M� g
�


k �wk� �

�
�� r	M� g
�

k �wk�
�
k�vk� �

�
��

�
	Cr	M� g


kg�ut �Mk
	�
�
k�vk�
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where the last inequality derives from 	��
� Applying the inequality � � t � e�t for t ��
�Cr�M�g�
kgut�Mk

�
� we obtain�

k�vk� � k�vk�e�
�
�Cr�M�g�

kg�ut�Mk

�
�

or� substituting �v � vk�� and �v � vk�

kvkk � kvk��ke�
�
�

�
�Cr�M�g�

kg�ut�Mk

�
� 	��


Applying 	��
 inductively� we can bound the size of the residual kvkk by

kvkk � kv�ke�
k
�

�
�Cr�M�g�

kg�ut�Mk

�
�

We now establish a bound on the size of the residual for STOP � STOP��

Lemma �� If GVNA with STOP � STOP� has performed k �complete� iterations� then

kvkk � �kM � g�utk
	C
p
k

�

Proof� Let �x be the current iterate of GVNA� Furthermore� let �v � g�M �x be the residual
at the point �x� �p be the solution of the problem 	CSOPC
 and �w � g �M �p� Suppose that
the algorithm has not terminated at the current iteration� and �x � �x�
�	�p� �x
 is the next
iterate and �v is the residual at �x� Then

k�vk� � k	�� 
�
�v � 
� �wk� � 	
�
�k�v � �wk� � �
��vt	 �w � �v
 � k�vk�� 	��


where 
� is given by 	��
� Consider two cases�

Case �� k �wk� � �wt�v� It can be easily shown that in this case 
� � �� Substituting this
value of 
� into 	��
� algebraic manipulations yield

k�vk� � k �wk� � �wt�v � k�vk�
�

� k�vk� � k�vk�
�

� k�vk� � k�vk�	�
C

��kM � g�utk� � 	��


The second inequality in 	��
 follows from the assumption that the algorithm did not
terminate at the present iteration� This implies that the termination criterion was not met�

i�e�� �vt �w � kvk�
� � The last inequality follows since

k�vk� � kM � g�utk�
	�
C

� �kM � g�utk�
	�
C

�

The need for the last inequality may not be immediately clear at this stage� but will become
more apparent later in this proof�
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Case �� k �wk� � �wt�v� It can be easily shown that in this case 
� � vt�v� w�
kv� wk� � Substituting

this value of 
� into 	��
 yields�

k�vk� � k�vk� � 	�vt	 �w � �v

�

k �w � �vk� �

Since �vt �w � kvk�
� � we have�

�vt	�v � �w
 � k�vk�
�

�

so that

k�vk� � k�vk� � k�vk�
�k �w � �vk� � k�vk� � k�vk�	�

C

��kM � g�utk� �
since

k �w � �vk� � k�vk� � k �wk� � �k�vk  k �wk � �kM � g�utk�
	�
C

�

Combining Case � and Case �� we conclude that

k�vk� � k�vk� � k�vk�
��

� where �
�
�

�kM � g�utk
	C

� 	��


Next� we establish 	using induction
 the following relation� from which the statement of the
lemma will follow� if the algorithm has performed k 	complete
 iterations� then

kvkk� � ��

k
� 	��


First� note that kv�k� � kM�gutk�
��
C

� ��

� � thus establishing 	��
 for k � �� Suppose

that 	��
 holds for k � �� Then� using the relationship for �v and �v established above with
�v � vk�� and �v � vk� we have�

kvk��k� � kvkk� � kvkk�
��

�

or� dividing by kvk��k�  kvkk��
�

kvkk� �
�

kvk��k� �
kvkk�

kvk��k��� �
�

kvk��k� �
�

��
�

Therefore�
�

kvk��k� �
�

kvkk� �
�

��
� k

��
�

�

��
�

and so

kvk��k� � ��

k � �
�

thus establishing the relation 	��
� which completes the proof of the lemma�

To complete the analysis of algorithm GVNA� we now discuss the computational work
performed per iteration� We have the following remark�
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Remark �� Each iteration of algorithm GVNA requires at most

TC �O	mn


operations� where TC is the number of operations needed to solve an instance of �CSOPC��
The term O	mn
 derives from counting the matrix�vector and vector�vector multiplications�

The number of operations required to perform these multiplications can be signi�cantly re�

duced if M and g are sparse�

� Elementary Algorithms for Homogeneous Conic Linear Sys�

tems

In this section we develop and analyze two elementary algorithms for homogeneous conic
linear systems� algorithm HCI 	for Homogeneous Conic Inequalities
 which solves systems
of the form

	HCI
 M ts � intC��

and algorithm HCE 	for Homogeneous Conic Equalities
 which solves systems of the form

	HCE
 Mw � ��
w � C�

Here the notation is the same as in Section �� and we make the following assumption�

Assumption � C � X is a regular cone� The width �C of the cone C and the coe
cient

of linearity 	C for the cone C� together with vectors �u and u of Remark � and Proposition

� are known and given� For y � Y � kyk � kyk��

Both algorithms HCI and HCE consist of calls to algorithm GVNA applied to transforma
tions of the appropriate homogeneous system� Algorithms HCI and HCE will be used in
Section � in the development of algorithm CLS for general conic linear system 	FPd
�

��� Homogeneous Conic Inequality System

In this subsection� we develop algorithm HCI 	for Homogeneous Conic Inequalities

and analyze its complexity and the properties of solutions it generates� Algorithm HCI is
designed to obtain a solution of the problem

	HCI
 M ts � intC�� 	��


We will assume for the rest of this subsection that the system 	HCI
 of 	��
 is feasible� We
denote the set of solutions of 	HCI
 by SM � i�e��

SM
�
� fs � M ts � intC�g�
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The solution s returned by algorithm HCI is �su�ciently interior� in the sense that the
ratio ksk�

dist�s��SM � is not excessively large� 	The notion of su�ciently interior solutions is very
similar to the notion of reliable solutions� However� we wish to reserve the appellation
�reliable� for solutions and certi�cates of infeasibility of the system 	FPd
�


Observe that the system 	HCI
 of 	��
 is of the form 	��
 	with g � �
� 	HCI
 is the
�alternative� system for the following problem�

	PHCI
 Mx � �
x � C
�utx � ��

	��


which is a system of the form 	��
� Following 	��
 we de�ne

r	M� �

�
� inffkhk � h � �Hg� 	��


where� as in 	��
� H �
� fMx � x � C� �utx � �g� Combining Proposition �� and a separating

hyperplane argument� we easily have the following result�

Proposition � Suppose �HCI� of ���� is feasible� Then �PHCI� of ���� is infeasible and

r	M� �
 � minfkMxk � x � C� �utx � �g� Furthermore� r	M� �
 � ��

Algorithm HCI� described below� consists of a single application of algorithm GVNA
to the system 	PHCI
 and returns as output a su�ciently interior solution of the system
	HCI
�

Algorithm HCI

� Data	 M

� Run algorithm GVNA with STOP � STOP� on the data set 	M� �� x�
 	where x� is
an arbitrary admissible starting point
� Let �v be the residual at the last iteration of
algorithm GVNA�

� De�ne s
�
� � v

kvk � Return s�

The following theorem presents an analysis of the iteration complexity of algorithm HCI�
and shows that the output s of HCI is a su�ciently interior solution of the system 	HCI
�

Theorem �� Suppose �HCI� is feasible� Algorithm HCI will terminate in at most�
��kMk�

	�
Cr	M� �
�

�
	��


iterations of algorithm GVNA�
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Let s be the output of algorithm HCI� Then s � SM and

ksk
dist	s� �SM 


� �kMk
	Cr	M� �


� 	��


Proof� Suppose that algorithm GVNA 	called in algorithm HCI
 has completed k itera
tions� From Lemma �� we conclude that

kvkk � �kMk
	C
p
k
�

where vk � �Mxk is the residual after k iterations� From Proposition ��� r	M� �
 � kMxk
for any admissible point x� Therefore�

r	M� �
 � kvkk � �kMk
	C
p
k
�

Rearranging yields

k � ��kMk�
	�
Cr	M� �
�

�

from which the �rst part of the theorem follows�

Next� observe that ksk � �� Therefore� to establish the second part of the theorem�

we need to show that dist	s� �SM 
 � �Cr�M���
�kMk � Equivalently� we need to show that for any

q � Y � such that kqk� � �� M t
�
s� �Cr�M���

�kMk q

� C�� Let p be an arbitrary vector satisfying

p � C� �utp � �� Then

�
M t

�
s�

	Cr	M� �


�kMk q

		t
p � stMp�

	Cr	M� �


�kMk qtMp� 	��


Observe that by de�nition of s

stMp �
��vtMp

k�vk � �vtwk��

k�vk �
k�vk
�
�

where �v � vk�� is the residual at the last iteration of algorithm GVNA� 	The �rst inequality
follows since p is an admissible point� and the second inequality follows from the fact that
the termination criterion of STOP� is satis�ed at the last iteration�
 On the other hand�

	Cr	M� �


�kMk qtMp � �	Cr	M� �


�kMk kqk�  kMk  kpk � �r	M� �


�
�

Substituting the above two bounds into 	��
� we conclude that

�
M t

�
s�

	Cr	M� �


�kMk q

		t
p �

k�vk
�
� r	M� �


�
� ��
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��� Homogeneous Conic Equality System

In this subsection� we develop algorithm HCE 	for Homogeneous Conic Equalities
 and
analyze its complexity and the properties of solutions it generates� Algorithm HCE is
designed to obtain a solution of the problem

	HCE
 Mw � �
w � C�

	��


We assume that M has full rank� We denote the set of solutions of 	HCE
 by WM � i�e��

WM
�
� fw � Mw � �� w � Cg�

The solution w returned by algorithm HCE is �su�ciently interior� in the sense that the
ratio kwk

dist�w��C� is not excessively large� 	The system 	HCE
 of 	��
 has a trivial solution
w � �� However this solution is not a su�ciently interior solution� since it is contained in
the boundary of the cone C
�

We de�ne

�	M

�
� min max �

v w
kvk � � s�t� Mw � �v � �

w � C
kwk � ��

	��


The following remark summarizes some important facts about �	M
�

Remark �� Suppose �	M
 � �� Then the set fw � WM � w 	� �g is non�empty� and M
has full rank� Moreover� �	M
 � kMk and

k	MM t
��k � �

�	M
�
� 	��


This follows from the observation that �	M
� � 
�	MM t
� where 
�	MM t
 denotes the

smallest eigenvalue of the matrix MM t�

We will assume for the rest of this subsection that �	M
 � �� Then the second statement
of Remark �� implies that the earlier assumption that M has full rank is satis�ed� In
order to obtain a su�ciently interior solution of 	HCE
 we will construct a transformation
of the system 	HCE
 which has the form 	��
� and its solutions can be transformed into
su�ciently interior solutions of the system 	HCE
� The next subsection contains the analysis
of the transformation� and its results are used to develop algorithm HCE in the following
subsection�
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����� Properties of a Parameterized Conic System of Equalities in Compact
Form

In this subsection we work with a compactform system

	HCE�
 Mx � �
x � C

�utx � ��
	��


The system 	HCE�
 is derived from the system 	HCE
 by adding a compactifying constraint
�utx � �� Remark �� implies that when �	M
 � � the system 	HCE�
 is feasible�

We will consider systems arising from parametric perturbations of the righthandside
of 	HCE�
� In particular� for a �xed vector z � Y � we consider the perturbed compactform
system

	HCE�
 Mx � z
x � C

�utx � ��
	��


where the scalar  � � is the perturbation parameter 	observe that 	HCE�
 can be viewed
as an instance of 	HCE�
 with the parameter  � �� justifying the notation
� Since the
case when z � � is trivial 	i�e�� 	HCE�
 is equivalent to 	HCE�
 for all values of 
� we
assume that z 	� �� The following lemma establishes an estimate on the range of values of 
for which the resulting system is feasible� and establishes bounds on the parameters of the
system 	HCE�
 in terms of �

Before stating the lemma� we will restate some facts about the geometric interpretation
of 	HCE�
 and the parameter r	M� z
 of 	��
� Recall that the system 	HCE�
 is feasible

precisely when z � H �
� fMx � x � C� �utx � �g� Also� if the system 	HCE�
 is feasible�

r	M� z
 can be interpreted as the radius of the largest ball centered at z and contained
in H� Moreover� using the inequality 	Ckxk � �utx � kxk for all x � C� it follows that

	Cr	M� �
 � �	M
 � r	M� �
�

Lemma �� Suppose �HCE�� of ���� is feasible� and z � Y � z 	� �� De�ne

� � maxf � �HCE�� is feasibleg� 	��


Then ��M�
kzk � r�M���

kzk � � � ��� Moreover� if �	M
 � �� then � � �� and for any  � ��� ���

the system �HCE�� is feasible and kM � z�utk � kMk� kzk and r	M� z
 �
�
���
�


�	M
�

Proof� Since H is a closed set� � is well de�ned� Note that the de�nition of � implies that
�z � �H� Also� since z 	� � and H is bounded� � � ��� To establish the lower bound on
�� note that for any y � Y such that kyk � �� r	M� �
y � H� Therefore� if we take y � z

kzk �

we have r�M���
kzk z � H� and so 	HCE�
 is feasible for  � r�M���

kzk � Hence� � � r�M���
kzk � ��M�

kzk �
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The bound on kM � z�utk is a simple application of the triangle inequality for the
operator norm� i�e�� kM � z�utk � kMk� kzk  k�uk� � kMk� kzk�

Finally� suppose that �	M
 � �� Then � � �� Let  � ��� �� be some value of the
perturbation parameter� Since  � �� the system 	HCE�
 is feasible� To establish the lower

bound on r	M� z
 stated in the lemma� we need to show that a ball of radius
���
�
r	M� �


centered at z is contained in H� Suppose y � Y is such that kyk � �� As noted above�
�z � H and r	M� �
y � H� Therefore�

z �
� � 
�

r	M� �
y �

�
	�z
 �

�
�� 

�

	
	r	M� �
y
 � H�

since the above is a convex combination of �z and r	M� �
y� Therefore� r	M� z
 �
���
�
r	M� �
 � ���

�
�	M
� which concludes the proof�

We now consider the system 	HCE�
 of 	��
 with the vector z
�
� �Mu� where u is as

speci�ed in Assumption �� The system 	HCE�
 becomes

	HCE�
 Mx � �Mu
x � C
�utx � ��

	��


The following proposition indicates how approximate solutions of the system 	HCE�
 of
	��
 can be used to obtain su�ciently interior solutions of the system 	HCE
�

Proposition �� Suppose �	M
 � � and  � �� Suppose further that x is an admissible

point for �HCE��� and in addition x satis�es

kMx� Muk � �

�
�C

�	M
�

kMk �

De�ne

w
�
� 	I �M t	MM t
��M
	x� u
� 	��


Then Mw � � and

kw � 	x� u
k � �

�
�C 	��


which implies that w � C� dist	w� �C
 � �
��C � and kwk � �

��C � �
�C

� �

Proof� First� observe that w satis�es Mw � � by de�nition 	��
� To demonstrate 	��
 we
apply the de�nition 	��
 of w to obtain

kw � 	x� u
k � kM t	MM t
��M	x� u
k � kMk  k	MM t
��k  kM	x� u
k

� �C�	M
�  kMk  k	MM t
��k
�kMk �

�C�	M
�  k	MM t
��k
�

� �C
�

�
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since k	MM t
��k � �
��M�� from Remark ���

The last three statements of the proposition are direct consequences of 	��
� Notice that
B	x� u� �C 
 � C since B	u� �C
 � C and x � C� Combining this with 	��
 and the
triangle inequality for the norm we conclude that w � C and dist	w� �C
 � �

��C � Also�

kwk � kw � 	x� u
k � kx� uk � �

�
�C �

�

	C
� �

which completes the proof�

Notice that w de�ned by 	��
 is the projection of x � u onto the set fw � Mw � �g
with respect to the Euclidean norm on the space X� Although the norm on the space X
may be di�erent from the Euclidean norm� we will refer to the point w de�ned by 	��
 as
the Euclidean projection of x� u�

It is interesting to note that it is not necessary to have  � � for Proposition �� to be
applicable�

����� Algorithm HCE

The formal statement of algorithm HCE is as follows�

Algorithm HCE

� Data	 M

� Iteration k� k � �

Step �  � k
�
� ���k� compute I	
�

I	

�
�

�
�

�	�
C

�
ln

�
�

��C�

�
� �

�

	C

		�
� 	��


Step � Run GVNA with STOP � STOP� with I � I	
 on the data set 	M��Mu� x�

	where x� is an arbitrary admissible starting point
�

Step � Let x be the last iterate of GVNA in Step �� Set w � 	I�M t	MM t
��M
	x�
u
� If kw � 	x� u
k � �

��C� stop� Return w�
Else� set k � k � � and repeat Step ��

The following proposition states that when �	M
 � � algorithm HCE will terminate
and return as output a su�ciently interior solution of 	HCE
�
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Theorem �� Suppose �HCE� satis�es �	M
 � �� Algorithm HCE will terminate in at
most �

log�

� kMk
�	M


	�
� � 	��


iterations� performing at most

�

�

�
���kMk�
�	M
�	�

C

ln

�
��kMk

�	M
�C	C

	�
�

�
log�

� kMk
�	M


	�
� � 	��


iterations of algorithm GVNA�

Algorithm HCE will return a vector w � X with the following properties	

�� w �WM �

�� dist	w� �C
 � �C��M�
�kMk �

�� kwk � �
��C

�

�� kwk
dist�w��C� � ��kMk

��M��C�C
�

Proof� We begin by establishing the maximum number of iterations algorithm HCE will
perform� Suppose that x is an admissible point for the system 	HCE�
 for some value  � ��
The residual at point x is de�ned in algorithm GVNA as v � �Mu�Mx � �M	x� u
�
From Proposition ��� having a residual with a small norm will guarantee that the projection
w of the point x� u will satisfy the property kw � 	x� u
k � �

��C� In particular� it is
su�cient to have kvk � � with

� �
�

�
�C

�	M
�

kMk � 	��


We now argue that if  � �
�
��M�
kMk � then Step � of algorithm HCE will terminate in I	


iterations and produce an iterate with the size of the residual no larger than � given by
	��
�

Suppose � �  � �
�
��M�
kMk � Let � be as de�ned in 	��
� Applying Lemma �� for z � �Mu

we conclude that the system 	HCE�
 is feasible for any  � ��� ��� and � � ��M�
kMuk � ��M�

kMk � �

Hence the system 	HCE�
 is feasible� and furthermore

kM � Mu�utk � 	� � 
kMk � �

�
kMk

	since  � �
� 
� and

r	M��Mu
 �
�
� � 
�

�
�	M
 � �

�
�	M
�



Computing a Reliable Solution of a Conic Linear System ��

Since the system 	HCE�
 is feasible� from Proposition �� it must be true that algorithm
GVNA with STOP � STOP� will perform I � I	
 iterations� where

I	

�
�

�
�

�	�
C

�
ln

�
�

��C�

�
� �

�

	C

		�
� ��kMk�

�	M
�	�
C

ln

�
�kMk�
�	M
��C

�
� �

�

	C

	�
� 	��


since  � �
�
��M�
kMk � Applying Lemma �� we conclude that after I	
 iterations of GVNA the

residual vI��� satis�es�

kvI���k � kv�ke�
I���
�

�
�Cr�M���Mu�

kM��Mu�utk

�
� kMx� � Muke�

I���
�

�
�C��M�

�kMk

�

�
�

�

	C
� 

	
kMke�

�kMk�

��M����
C

ln

�
�kMk�

��M���C

�
�� �

�C�


�
�
�C��M�

�kMk

�
�

�	M
��C

�kMk � ��

We conclude that if � �  � �
�
��M�
kMk � then algorithm GVNA of Step � of HCE will perform

I	
 iterations and w de�ned in Step � will satisfy the termination criterion of HCE�

In principle� algorithm HCE might terminate with a solution after as little as one itera
tion� if the point w de�ned in Step � of that iteration happens to be su�ciently close to the
point x � u� However� in the worst case algorithm HCE will continue iterating until the
value of  becomes small enough to guarantee 	by the analysis above
 that the corresponding
iteration will produce a point satisfying the termination criterion� To make this argument
more precise� recall that during the kth iteration of the algorithm HCE�  � k � ���k�
Hence� HCE is guaranteed to stop at 	or before
 the iteration during which value of  falls

below �
�
��M�
kMk for the �rst time� In other words� the number of iterations of HCE that are

performed is bounded above by

min

�
k � ���k � �

�

�	M


kMk
�
�

Therefore algorithm HCE will terminate in no more than

K �

�
log�

� kMk
�	M


	�
� � 	��


iterations� which proves the �rst claim of the theorem� Also� notice that throughout the
algorithm�

k �
�

�

�	M


kMk � 	��


To bound the total number of iterations of GVNA performed by HCE� we need to bound
the sum of the corresponding I	
!s�

KX
k	�

I	k
 �
KX
k	�

�
�  �k
�	�

C

ln

�
�k

��C

�
� �

�k��

	C

���
� 	��
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It can be shown by analyzing the geometric series
PK

k	� �
k that the sum in 	��
 satis�esPK

k	� I	
k
 � �

�I	
K
 �K� Therefore

KX
k	�

I	k
 � �

�

�
�

�	�
C	

K
�
ln

�
�

��C	K
�

�
� �

�

	CK

		�
�K

� �

�

�
��kMk�
�	M
�	�

C

ln

�
�kMk�
�	M
��C

�
� �

�kMk
�	M
	C

	��
�

�
log�

� kMk
�	M


	�
� �

� �

�

�
��kMk�
�	M
�	�

C

ln

�
��kMk�

�	M
��C	C

��
�

�
log�

� kMk
�	M


	�
� �

� �

�

�
���kMk�
�	M
�	�

C

ln

�
��kMk

�	M
�C	C

	�
�

�
log�

� kMk
�	M


	�
� �� 	��


The �rst inequality in 	��
 follows from 	��
� We have thus established the second claim of
the theorem�

It remains to show that the vector w returned by algorithm HCE satis�es conditions �
through �� Let K denote the value of  during the last iteration of HCE� Applying Proposi
tion �� combined with 	��
 we conclude that conditions � and � are satis�ed� Furthermore�

kwk � �

�
K�C �

�

	C
� K � �

�
�

�

	C
� �

�	C
�

which establishes condition �� and

kwk
dist	w� �C


�
�
�

K�C � �
�C

� K

�
��C

K
� �

�
�

�
�

�

	C�CK
�

�

�C

	

� �

�
�

�
�

�kMk
�	M
	C�C

�
�

�C

	
� ��kMk

�	M
	C�C
�

which establishes condition � and completes the proof of the theorem�

� Algorithm CLS for resolving a general conic linear system�

In this section we indicate how algorithms HCI and HCE can be used to obtain reliable
solutions of a conic linear system in the most general form� A general conic linear system
has the form

	FPd
 Ax � b
x � CX

of 	�
� and the �strong alternative� system of 	FPd
 is

	SAd
 Ats � C�
X

bts � �
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of 	��
� We develop algorithm CLS� which is a combination of two other algorithms� namely
algorithm FCLS 	Feasible Conic Linear System
 which is used to �nd a reliable solution
of 	FPd
� and algorithm ICLS 	Infeasible Conic Linear System
� which is used to �nd a
reliable solution to the alternative system 	SAd
� We �rst proceed by presenting algorithms
FCLS and ICLS� and studying their complexity� We then combine algorithms FCLS and
ICLS to form algorithm CLS and study its complexity�

Recall that Assumption � is presumed to be valid for the cone CX �

��� Algorithm FCLS

Algorithm FCLS is designed to compute a reliable solution of 	FPd
 of 	�
 when the
system 	FPd
 is feasible� Consider the following reformulation of the system 	FPd
�

�b� �Ax � �
� � �� x � CX �

	��


System 	��
 is of the form 	HCE
 of 	��
 under the following assignments�

� M �
h
�b A

i
� C � �� � CX �

with norms de�ned as follows�

� k	�� x
k � j�j� kxk� 	�� x
 � ��X

� kvk � kvk�� v � Y �

Then the norm approximation vector for C is easily seen to be �u � 	�� �f
 with 	C � 	�
Moreover� the width of the cone C is �C � �

��� � �
�� and is attained at u � �

��� 	�� f
�

Proposition �� Suppose �FPd� of ��� is feasible and �	d
 � �� Then the system ���� is

feasible� M has full rank� and we have

kMk � kdk� and �	M
 � �	d
�

where �	M
 is de�ned in �����

Proof� Feasibility of the system 	��
 is trivially obvious� The expression for kMk � kdk
follows from the de�nition of the operator norm� The last statement of the proposition is
a slightly altered restatement of Theorem ��� of ����� Since �	M
 � �	d
 � �� Remark ��

implies that M has full rank�

We use algorithm HCE to �nd a su�ciently interior solution of the system 	��
 and
transform its output into a reliable solution of 	FPd
� as described below�
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Algorithm FCLS

� Data	 d � 	A� b


Step � Apply algorithm HCE to the system 	��
� The algorithm will return a vector
�w � 	��� �x
�

Step � De�ne �x � �x
�	
� Return �x 	a reliable solution of 	FPd
 
�

Lemma �� Suppose �FPd� is feasible and �	d
 � �� Then algorithm FCLS will terminate

in at most
�

�

�
���C	d
�

	�
ln

�
��C	d

�	

	�
� dlog� C	d
e � � 	��


iterations of algorithm GVNA� The output �x will satisfy

�� �x � Xd�

�� k�xk � ��C�d�
�� � ��

�� dist	�x� �CX
 � ��
��C�d� �

�� k�xk
dist��x��CX� � ��C�d�

�� �

Proof� To simplify the expressions in this proof� de�ne �
�
� dist	 �w� �C
 � dist

�
	��� �x
� �	�� � CX



�

From Theorem �� we conclude that algorithm HCE in Step � will terminate in at most

�

�

�
���C	d
�

	�
ln

�
��C	d

�	

	�
� dlog� C	d
e � �

iterations of algorithm GVNA� which establishes the �rst statement of the lemma�

Next� from Theorem �� we conclude that the vector �w � 	��� �x
 returned by algorithm
HCE in Step � satis�es�

�b�� �A�x � �� 	��� �x
 � �� � CX � � � �C�	M


�kMk � �

��C	d
 � 	��


j��j� k�xk � �

�	C
�

�

�	
�
k	��� �x
k

�
� ��kMk

�	M
	C�C
� ��C	d


	�
� 	��


Note in particular that 	��
 implies that �� � � � �� so that �x is wellde�ned� and A�x �
b� �x � CX � which establishes statement ��

Next�

k�xk � k�xk
��

�
k �wk � ��

��
� k �wk

�
� � � ��C	d


	�
� ��
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which proves ��

To prove �� de�ne r
�
� 


k �wk	� � k�xk
� Then a simple application of 	��
 implies that

r � ��
��C�d� � Further� let p � X be an arbitrary vector satisfying kpk � r� Then

k��pk � ��  r � ��  �

k �wk 	� � k�xk
 � �

k �wk 	
�� � k�xk
 � ��

and so �x� ��p � CX � and hence �x� p � �x��	p
�	

� CX � Therefore� dist	�x� �CX
 � r � ��
��C�d� �

establishing ��

Finally�
k�xk

dist	�x� �CX

� k�xk

r
�

k�xk  k �wk
�	� � k�xk
 �

k �wk
�

� ��C	d

	�

�

which establishes ��

��� Algorithm ICLS

Algorithm ICLS is designed to compute a reliable solution of 	SAd
 of 	��
 when the
system 	FPd
 is infeasible� Consider the following compactform reformulation of the system
	FPd
�

�br �Ax � �
r � �f tx � ��
r � �� x � CX �

	��


The alternative system to 	��
 is given by

�bts � �
Ats � intC�

X �
	��


System 	��
 is of the form 	HCI
 under the following assignments�

� M �
h
�b A

i
� C � �� � CX �

with norms de�ned as follows�

� k	r� x
k � jrj� kxk� 	r� x
 � ��X

� kvk � kvk�� v � Y �

Then the norm approximation vector for C is easily seen to be �u � 	�� �f 
 with 	C � 	�
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Proposition �� Suppose the system �FPd� is infeasible and �	d
 � �� Then the system
���� is infeasible� and we have

kMk � kdk�

�	d
 � r	M� �
 � �	d


	
�

where r	M� �
 is de�ned in �����

Proof� Infeasibility of the system 	��
 follows from Proposition �� The expression for
kMk � kdk follows from the de�nition of the operator norm� Next we establish the bounds
on r	M� �
� Since the system 	��
 is infeasible r	M� �
 is computed using 	��
 as

r	M� �
 � min k��M	r� x
k � min kbr �Axk
r � �f tx � � r � �f tx � �
r � �� x � CX r � �� x � CX �

	��


which is exactly program Pg	d
 of ���� 	for the case when CY � f�g
� Therefore� applying
Theorem ��� of ���� we conclude that 	r	M� �
 � �	d
 � r	M� �
� that is� �	d
 � r	M� �
 �
��d�
� �

We use algorithm HCI to compute a su�ciently interior solution of the system 	��
 and
show that it is a reliable solution of 	SAd
� as described below�

Algorithm ICLS

� Data	 d � 	A� b


Step � Apply algorithm HCI to the system 	��
� The algorithm will return a vector
s�

Step� Return s 	a reliable solution of 	SAd
 
�

Lemma �� Suppose �FPd� is infeasible and �	d
 � �� Then algorithm ICLS will terminate

in at most �
��C	d
�
	�

�
	��


iterations of GVNA� The output s satis�es s � Ad and

ksk
dist	s� �Ad


� �C	d

	

�

Proof� From Theorem �� we conclude that algorithm HCI in Step � will terminate in at
most �

��kMk�
	�
Cr	M� �
�

�
�
�
��C	d
�
	�

�
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iterations of GVNA� which establishes the �rst statement of the lemma� Furthermore� the
output s satis�es s � SM and

ksk
dist	s� �SM 


� �kMk
	Cr	M� �


� �C	d

	

�

Since SM � Ad� the result follows�

��� Algorithm CLS

Algorithm CLS described below is a combination of algorithms FCLS and ICLS� Algo
rithm CLS is designed to solve the system 	FPd
 of 	�
 by either �nding a reliable solution
of 	FPd
 or demonstrating the infeasibility of 	FPd
 by �nding a reliable solution of 	SAd
�
Since it is not known in advance whether 	FPd
 is feasible or not� algorithm CLS is designed
to run both algorithms FCLS and ICLS in parallel� and will terminate when either one of
the two algorithms terminates� The formal description of algorithm CLS is as follows�

Algorithm CLS

� Data	 d � 	A� b


Step � Run algorithms FCLS and ICLS in parallel on the data set d � 	A� b
� until
one of them terminates�

Step � If algorithm FCLS terminates �rst� return its output �x� If algorithm ICLS
terminates �rst� return its output s�

Although Step � of algorithm CLS calls for algorithms FCLS and ICLS to be run in
parallel� there is no necessity for parallel computation per se� Observe that both algorithms
FCLS and ICLS consist of repetitively calling the algorithm GVNA on a sequence of data
instances� A sequential implementation of Step � is to run one iteration of algorithm GVNA
called by algorithm FCLS� followed by the next iteration of algorithm GVNA called by the
algorithm ICLS� etc�� until one of the iterations yields the termination of the algorithm�

Combining the complexity results for algorithms FCLS and ICLS from Lemmas �� and
�� we obtain the following complexity analysis of algorithm CLS�

Theorem � Suppose that �	d
 � � and Assumption � is satis�ed� If the system �FPd� is
feasible� algorithm CLS will terminate in at most

�

�

�
���C	d
�

	�
ln

�
��C	d

�	

	�
� � dlog� C	d
e � �

iterations of GVNA� and will return a reliable solution �x of �FPd�� That is� �x will have the

following properties	
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� �x � Xd�

� k�xk � ��C�d�
�� � ��

� dist	�x� �CX
 � ��
��C�d� �

� k�xk
dist��x��CX� � ��C�d�

�� �

If the system �FPd� is infeasible� algorithm CLS will terminate in at most

�

�
��C	d
�
	�

�

iterations of GVNA� and will return a reliable solution s of �SAd�� thus demonstrating

infeasibility of �FPd�� That is� s will satisfy the following properties	

� s � Ad�

� ksk
dist�s��Ad�

� �C�d�
� �

Proof� The proof is an immediate consequence of Lemmas �� and ��� The bounds on the
number of iterations of algorithm GVNA in the theorem are precisely double the bounds in
the lemmas� due to running algorithms FCLS and ICLS in parallel�

� Discussion

Discussion of complexity bound and work per iteration� Observe that algorithm
CLS 	as well as algorithms FCLS and ICLS
 consists simply of repetitively calling algorithm
GVNA on a sequence of data instances 	M� g
� all with the same matrix M � ��b A�� and
with righthand side of the form g � � or g � �Mu for a sequence of values of the
parameters � Viewed in this light� algorithm CLS is essentially no more than algorithm
GVNA applied to a sequence of data instances all of very similar form� The total workload
of algorithm CLS� as presented in Theorem ��� is the total number of iterations of algorithm
GVNA called in algorithm CLS� In this perspective� algorithm CLS is �elementary� in that
the mathematics of each inner iteration is not particularly sophisticated� only involving some
matrixvector multiplications and the solution of one conic section optimization problem
	CSOPCX 
 per iteration of GVNA� see Remark ���

Remark �� Each iteration of algorithm GVNA used in algorithms FCLS and ICLS uses

at most
TCX �O	mn


operations� where TCX is the number of operations needed to solve an instance of �CSOPCX ��

The term O	mn
 derives from counting the matrix�vector and vector�vector multiplications�

The number of operations required to perform these multiplications can be signi�cantly re�

duced if the matrices and vectors involved are sparse�
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In addition to running algorithm GVNA� algorithm CLS 	in particular� algorithm�
FCLS
 computes several Euclidean projections using formula 	��
� This computation can
not be considered elementary since� in particular� it involves computing an inverse of a
square matrix MM t which requires O	m�
 iterations� However� since the matrix M used
by algorithm FCLS is the same in all projection computations� this step of the algorithm

can be implemented by computing the projection matrix P
�
� I�M t	MM t
��M �o�line�

	before calling algorithm CLS
� Then the projections required by the algorithm FCLS can
be computed by means of matrixvector multiplication� Since algorithm FCLS will per
form no more than O	ln	C	d


 computations of Euclidean projections 	see Theorem ��
�
the multiplications involving matrix P will not increase the computation time signi�cantly
even though matrix P is not likely to have a nice sparsity structure�

Other formats of conic linear systems� In this paper� we have assumed that the
problem 	FPd
 has �primal standard form� Ax � b� x � CX � where CX is a regular cone�
Instead� one might want to consider problems in �standard dual form� b�Ax � CY � x � X�
or the most general form b � Ax � CY � x � CX � Elementary algorithms for problems in
these forms� with the cones CY and�or CX assumed to be regular� are addressed in detail in
���� In general� these problems can be approached by converting them into primal standard
form above and applying algorithm CLS as described in this paper� The technique for
converting problems of general form b � Ax � CY � x � CX into primal standard form
was originally suggested by Pe�na and Renegar ���� and can be interpreted as introducing
scaled slack variables for the linear constraints� This approach is extended to problems
in standard dual form in ���� In some cases� however� the problem can be treated by an
elementary algorithm directly� without converting it into standard form� These approaches
are also presented in detail in ����

Converting Algorithm CLS into an Optimization Algorithm� Converting algorithm
CLS into an optimization algorithm is a logical extension of the work presented in this paper�
Suppose that we are interested in minimizing a linear function ctx over the feasible region of
	FPd
� Then algorithm CLS could be modi�ed� for example� with the addition of an outer
loop that will add an objective function cut of the form ctx � ct�x whenever a solution �x is
produced at the previous iteration� This may be a topic of future research�

Ill�posed problem instances� The complexity bound of Theorem �� relies on the fact
that 	FPd
 is not illposed� i�e�� �	d
 � �� The algorithm CLS is not predicted to perform
well 	and in fact� is not guaranteed to terminate
 in cases when �	d
 � �� This does not
constitute� in our view� a weakness of the algorithm� since such problems are exceptionally
badly behaved in general� In particular� an arbitrarily small perturbation of the data can
change the feasibility status of such problems� which makes it rather hopeless to compute
exact solutions or certi�cates of infeasibility�
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