18.409 The Behavior of Algorithms in Practice
 Lecture 18
 Lecturer: Dan Spielman

1 left off:

$\operatorname{Prob}\left[\operatorname{ang}\left(z, \delta \Delta\left(a_{\pi_{1}}, \ldots, a_{\pi_{d}}\right)\right)<\epsilon \mid \operatorname{opt} \Delta_{2}\left(a_{\ldots} a_{n}\right)=\pi_{1} \ldots \pi_{d}\right]$ where $a \ldots a_{n}$ are the dist. according to $\prod_{i=1}^{n} \mu_{i}\left(\alpha_{i}\right), \mu_{i}$ are Gaussian, $\operatorname{var}^{2} \leq 1$, center norm ≤ 1.

2 key idea:

change of variables

$$
\begin{gathered}
a_{\pi_{1}} \ldots a_{\pi_{d}} \rightarrow\|w\|=1, r \geq 0 \text { such that }<w, a_{\pi_{i}}>=r \\
b_{\pi_{1}} \ldots b_{\pi_{d}}
\end{gathered}
$$

be local coords. of $a_{\pi_{1}} \ldots a_{\pi_{d}}$ on that plane.
observe that unlikely $\left\|a_{i}\right\| \geq 1+4 \sqrt{d \log n}$ so let $\Gamma=1+\sqrt{d \log n}$.
So can say:

$$
\operatorname{ang}\left(z, \delta \Delta\left(a_{\pi_{1}}, \ldots, a_{\pi_{d}}\right)\right) \geq \frac{\operatorname{dist}\left(z^{w, r}, \delta \Delta\left(b_{\pi_{1}}, \ldots, b_{\pi_{d}}\right)\right)<z, w>}{3 r}
$$

Let $z^{w, r}$ be a point along ray direction on plane w, r, need to bound:

$$
\operatorname{Pr}_{w, r, b_{p_{1}}, \ldots, b_{p_{d}}}\left[\frac{\operatorname{dist}\left(z, \delta \Delta\left(b_{\pi_{1}}, \ldots, b_{\pi_{d}}\right)\right)<z, w>}{3 r}<\epsilon\right]
$$

where $w, r, b_{p_{1}}, \ldots, b_{p_{d}}$ have density:
$\left[\prod_{j \in \pi_{1} \ldots \pi_{d}} \int_{a_{j}}\left[<w, a_{j}>\leq r\right] \mu_{i}\left(a_{j}\right)\right]\left(\prod_{j=1}^{d} \mu_{\pi_{i}}\left(a_{\pi_{i}}\right)\right)\left[z^{w, r} \in \Delta\left(b_{\pi_{1}}, \ldots, b_{\pi_{d}}\right)\right] \operatorname{Vol}\left(\Delta\left(b_{\pi_{1}}, \ldots, b_{\pi_{d}}\right)\right)$
(suitably re-normalized)
for today show: $\forall z \forall w, r$ such that $\left\|z^{w, r}\right\| \leq \Gamma$

$$
\operatorname{Pr}_{b_{1}}, \ldots, b_{d}\left[\operatorname{dist}\left(z^{w, r}, \delta \Delta\left(b_{\pi_{1}}, \ldots, b_{\pi_{d}}\right)\right)<\epsilon\right]<\frac{16 e^{4} \Gamma^{2}(1+\Gamma)}{\sigma^{4}} \epsilon
$$

Where $b_{\pi_{1}}, \ldots, b_{\pi_{d}}$ have density $\left(\prod_{i=1}^{d} \mu \pi_{i}\left(a_{\pi_{i}}\right)\right) \operatorname{Vol}\left(\Delta\left(b_{\pi_{1}}, \ldots, b_{\pi_{d}}\right)\right)\left[z^{w, r} \in \Delta\left(b_{\pi_{1}}, \ldots, b_{\pi_{d}}\right)\right]$ where the first factor of the very last formula is in terms of $b_{\pi_{i}}$ s Gaussian each. Var ${ }^{2}$ center norm ≤ 1.

Theorem 1. re-stated
Let $b_{1} \ldots b_{d}$ be points in \Re^{d-1}
with density $\prod_{i=1}^{d} \mu_{i}\left(b_{i}\right) \operatorname{Vol}\left(\Delta\left(b_{1}, \ldots, b_{d}\right)\right)\left[z \in \Delta\left(b_{1}, \ldots, b_{d}\right)\right]$ where $\|z\| \leq$ Γ, μ_{i} Gaussian, var $\sigma^{2} \leq 1$, norm center ≤ 1.

What is $\operatorname{Pr}\left[\operatorname{dist}\left(z, \delta \Delta\left(b_{1}, \ldots, b_{d}\right)\right)<\epsilon\right]$?
Two steps:

1. Show b_{1} unlikely near aff. $\left(b_{1} \ldots b_{d}\right)$
2. Given b_{1} is far from aff. $\left(b_{1} \ldots b_{d}\right)$, unlikely too close to aff. $\left(b_{1} \ldots b_{d}\right)$. (where aff. denotes an affine line)
to 1: $\operatorname{Pr}\left[\operatorname{dist}\left(b_{1}\right.\right.$, aff. $\left.\left.\left(b_{2} \ldots b_{d}\right)\right)<\epsilon\right]<e^{2}\left(\frac{d(1+\Gamma) \epsilon}{\sigma^{2}}\right)^{3}$
to 2: $\operatorname{Pr}\left[\operatorname{dist}\left(z, a f f .\left(b_{2} \ldots b_{d}\right)\right)<\epsilon \operatorname{dist}\left(b_{1}, a f f .\left(b_{2} \ldots b_{d}\right)\right)<\frac{2 e^{3} d(2 p)^{2} \epsilon}{\sigma^{2}}\right]$
These imply Theorem 1 . We use change of variables to show 1 :
Make z the origin (for notational simplicity), so now the distances have centers of norm $\leq \Gamma+1$.

Let $\|\tau\|=1, t \geq 0$ be such that $\left\langle b_{i}, \tau\right\rangle=t$ for $i=1 . . d$ and let $c_{2} . . c_{d}$ be the local coords. of the $b_{i} \mathrm{~s}$ in that plane. Jac is $\operatorname{Vol}\left(\Delta\left(c_{2} . . c_{d}\right)\right)$

$$
\operatorname{dist}\left(b, a f f .\left(b_{2} . . b_{d}\right)\right)=t-<b_{1}, \tau>
$$

Let $l=-<b_{1}, \tau>$, let c_{1} be the projection of b_{1} onto the plane spee by τ, t.
$P r_{\tau, t, l, c_{1}, \ldots, c_{d}}[(l+t)<\epsilon]$ with density

$$
\left(\prod_{i=1}^{d} \mu_{i}\left(b_{i}\right)\right) \operatorname{Vol}\left(\Delta\left(b_{1} \ldots b_{d}\right)\right)\left[O \in \Delta\left(b_{1} \ldots b_{d}\right)\right] \operatorname{Vol}\left(\Delta\left(c_{2} \ldots c_{d}\right)\right)
$$

where $\operatorname{Vol}\left(\Delta\left(c_{2} \ldots c_{d}\right)\right)$ equals $(l+t) \operatorname{Vol}\left(\Delta\left(c_{2} \ldots c_{d}\right)\right) \sim(1+\alpha) t\left(^{*}\right)$
Note: for any $c_{1}, c_{2}, \ldots, c_{d}, l, t$ such that $O \in \Delta\left(b_{1}, \ldots, b_{d}\right)$ if mult. 1,t by const.
$\rightarrow \mathrm{cl}$ ct still have $O \in \Delta\left(b_{1}, \ldots, b_{d}\right)$.
let $l=\alpha t$ gives Jacobian $\left|\frac{\delta l}{\delta \alpha}\right|=t$
$(*) \sum \max _{c_{1}, \ldots, c_{d}, t, \alpha, s . t . O \in \Delta\left(b_{1}, \ldots, b_{d}\right)} \operatorname{Pr}[(1+\alpha) t<\epsilon]$
where t has density
$\left(\prod_{i=1}^{d} \mu_{i}\left(b_{i}\right)\right) t^{2}($, near O in small region looks like a constant)

We will actually bound

$$
\operatorname{Pr}[\operatorname{tmax}(1, \alpha)<\epsilon] \geq \operatorname{Pr}[(1+\alpha) t<\epsilon]
$$

$b_{2}=\left(t, c_{2}\right)$
$b_{1}\left(-\alpha t, c_{1}\right)$
can write this way:
μ is centered at points of norm $\leq 1+\Gamma$
So, we claim for $0 \leq t \leq \frac{\sigma^{2}}{d(1+\Gamma)}$
$\mu_{i}\left(t, b_{i}\right)$ varies by at most $e^{\frac{2}{d}}$ (former, we showed similar with no ds)
For $0 \leq t \leq \frac{\sigma^{2}}{d(1+\Gamma)}$
$b \mu_{1}\left(-\alpha t, b_{1}\right)$ varies by at most $e^{\frac{2}{d}}$, setting $t_{0}=\frac{\sigma^{2}}{d(1+\Gamma)} \min \left(1, \frac{1}{\alpha}\right)$ then

$$
\frac{\max _{0 \leq t \leq t_{0}} \prod_{i=1}^{d} \mu_{i}\left(b_{i}\right)}{\min _{0 \leq t \leq t_{0}} \prod_{i=1}^{d} \mu_{i}\left(b_{i}\right)} \leq \epsilon^{2}\left({ }^{* *}\right)
$$

So by the following Proposition 1, we have

$$
\begin{aligned}
& \operatorname{Pr}\left[t<\epsilon t_{0}\right] \leq e^{2} \epsilon^{3} \text { or } \operatorname{Pr}\left[\operatorname{tmax}(1, \alpha)<\frac{\epsilon \sigma^{2}}{d(1+\Gamma)}\right] \leq e^{2} \epsilon^{3} \\
& \Rightarrow \operatorname{Pr}[\operatorname{tmax}(1, \alpha)<\epsilon] \leq e^{2}\left(\frac{d(1+\Gamma)}{\sigma^{2}} \epsilon\right)^{3}
\end{aligned}
$$

Proposition 1. Let t be distributive according to $f(t) t^{2}$ where

$$
\frac{\max _{0 \leq t \leq t_{0}} f(t)}{\min _{0 \leq t \leq t_{0}} f(t)} \leq \epsilon^{2}
$$

then

$$
\operatorname{Pr}\left[t<\epsilon t_{0}\right] \leq e^{2} \epsilon^{3}
$$

Pf 1. $\operatorname{Pr}\left[t<\epsilon t_{0}\right] \leq \frac{\operatorname{Pr}\left[t<\epsilon t_{0}\right]}{\operatorname{Pr}\left[t<t_{0}\right]}=\frac{\int_{t=0}^{\epsilon t_{0} f(t) t^{2}}}{\int_{t=0}^{t_{0} f(t) t^{2}}} \leq \frac{\max _{0 \leq t \leq \epsilon t_{0}} f(t)}{\max _{0 \leq t \leq t_{0}} f(t)} \frac{\int_{t=0}^{\epsilon t t_{0}} t^{2}}{\int_{t=0}^{t o} t^{2}} \leq e^{2} \epsilon^{3}$

