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Lecture 10
Lecturer: Jonathan Kelner

In this lecture, we shall revisit the Spectral Sparsifiers and see a slightly different proof from last time.
We will then begin a new topic: Convex Geometry.

1 Spectral Sparsification

Given a dense graph G, we would like want to create a sparse graph H where

Lh � LG � (1 + ε)LH

By “sparse,” we mean that H has n.polylog(n) edges, where n is the number of nodes. More precisely, we
show how to construct a spectral sparsifiers with O(nlogn) edges in Polynomial time. This can actually be
improved to a linear time construction, but will use geometric techniques that we will learn. It is possible to
construct O(n) edge sparsifiers in polynomial time. It is also a nice example of how generalizing can make
things easier sometimes. The algorithm that we propose is very simple. It is similar in structure to the B-K
algorithm, but we use different probabilities for sampling the edges.

• Compute probability pe for each edge e.

• Sample each edge uniformly with probability pe, and if an edge is selected, include it with weight 1/pe.

These probabilities are based on a linear algebra sense of importance, and have a nice interpretation in terms
of effective resistance of circuits. To proceed with our analysis, however, we need to develop the ideas of
pseudoinverses, calculating effective resistances, and a matrix version of the Chernoff Bound.

1.1 Laplacians and Electrical Flow

We mentioned earlier that Spectral Sparsification can be viewed as sampling edges with different probability.
It turns out that the correct way to do this is to sample each edge with probability proportional to its
“effective resistance.” The basic idea is to treat each edge as a resistor with resistance 1. If the edge had a
capacity of c, we give it a resistance of 1/c. After calculating these values, we sample the edge (u, v) with
probability proportional to the effective resistance between nodes u and v. For example, students may use
a combination of Ohm’s law and Kirchoff’s law, as well as the rules for calculating effective resistances of
resistors in series and parallel. To those who are comfortable with solving circuits, this may be a good way
to think about the problem. However, the students who don’t like solving circuits are in luck too: now that
we have the tools of Spectral Graph Theory, we can solve circuits with only linear algebra! In fact, we will
combine our frequent use of the graph Laplacian with the pseudoinverse defined above. We orient the edges
arbitrarily and define U to be the edge-vertex adjacency matrix. That is, we define U as in:

U(e, v) =
 1 if v is the head of e
−1 if v is the tail of e
0 otherwise

We then let L = UTU . From ohm’s la


w, we have iReff = Uv for i ∈ RE and v ∈ Rv. From the

conservation of current, we have iext = UT i, for iext ∈ RV . Finally, we have iext = Lv, and v = L+iext

Let ue be the eth row of U (as defined in the prequel), and v = L+iext. We have

Reff (e) = ueL
+uT

e
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and as a result,
Reff (e) = (UL+UT )e,e

Thus, calculating the effective resistance of an edge is as simple as calculating the pseudoinverse of the
Laplacian. Simple!

1.2 Towards Approximation

To show that H is a spectral sparsifier of G if suffices to show that

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx, ∀x

For this, it suffices to show that, ∀y,
1

yT (L+

(1− ε) ≤ G) +
2LH(LG)

1
2 y

1
yT (L+

G) +
2LG(LG)

1

1

(1
2
≤ + ε), (Just take y = L 2

Gx)

Equivalently, need to show that

‖ (L+
G)

1 1+2LH(LG) 2 )− Iim(LG
‖2 ≤ ε

We will use the following theorem (in which k is a universal constant):

Theorem 1 (RV Theorem) For distributions on vectors y where ‖ y ‖≤ t and ‖ Eyyt ‖2≤ 1 (where we
are using the l2 norm) then:

E ‖ EyyT − yiy
T

q i

i=1

‖2≤ kt
q

This is a “concentration of measure theorem”(similar to Chernoff bounds).

LG =
∑

Le =
∑

u T
eue

e∈E e∈E

Iim(LG) = L+
G)

1 1+2LG(LG) 2

=
e

∑
L+

G)
1

∈E

1+2Le(LG) 2

=
e

∑
L+

G)
1

∈E

1T2UeUe (L+
G) 2

=
e

∑
qeq

T
e , where qe = (L+

G)
1

∈E

2ue

‖ qe ‖2 = uT
e L

+
G)

1 1+2LG) 2ue

= ueL
+)ue = Reff (e)

Iim(LG) =
∑

q qT 2
e e and

e

‖ qe ‖ = Reff (e)
∈E

We would like all the vectors of same length, so set τe =
√

n−1 πeceReff (e) with ‖ τe ‖=
√
n− 1. Now make a

distribution which picks τe with probability pe = c2Reff (e)
n−1 . Recall that∑

ceReff (e) =
e

∑
Πe,e = n

e

− 1
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Then, we find that
E[τeτT

e ] =
∑

peτeτ
T
e =

∑
qeqT

e = Iim(LG)XS

e e

Sample q times with replacement, and set S(e, e) = 1
( the eqc R e) × number of times that is chosen.

Then, from the theorem above, we have
e eff

E[‖ (L+
G)

1 1+2LH(LG) 2 )− Iim(LG
‖2] ≤ k

√
n− 1

√
logN

N
≤ ε,∀N = θ(n log n/ε2)

.

1.3 Algorithmics of the Construction

Thus, we see that our construction yields a spectral sparsifier as desired. From the algorithmics of the
construction, it is easy to see that this is a poly-time procedure. The whole procedure is constructive, and
uses the standard linear algebra operations. The bottleneck in this procedure comes from computing effective
resistances, and in particular, the matrix inversions and multiplications. We claim that the procedure can
be improved to nearly linear time. Doing so would involve two components:

• Close to linear algorithms for solving linear equations of the form Lx = b for a laplacian L.

• A way to compute all the effective resistances by solving logarithmically many linear systems. This
uses the Johnson-Lindenstrauss Lemma.

1.4 Spectral Sparsification is Easy

• Pick N τe vectors with replacement from this distribution.

• Take an edge e with weight:

1
N.Reff (e)× ( number of times chosen )

• Note: Bigger q vectors get picked with higher probability, but are scaled down more!

• By R-V Theorem,

E[‖ (L+
G)

1 1+2LH(LG) 2 )− Iim(LG
‖2] ≤ k

√
n− 1

√
logN 2

N
≤ ε,∀N = θ(n log n/ε )

.

2 Convex Geometry

This lecture we will just have many examples to build intuition. Next lecture we will start proving theorems.

Definition 2 We say a set C ⊆ Rn is convex when for all x, y ∈ C and t ∈ [0, 1], tx + (1 − t)y ∈ C. A
function f : Rn → R is convex iff the region above its graph (in Rn+1) is convex. A function f : Rn → R is
concave iff −f is convex. A convex body is a convex set which is both compact and has non-empty interior.

Keith Ball can be quoted as saying “All convex bodies behave a lot like Euclidean balls”. This claim is
“almost true” if one adds a few extra shapes: the ball, ellipsoid, cube, regular simplex, cross-polytope, and
spherical cone (and all linear transformations of these shapes). Of course, this is not a formal statements:
one can easily construct theorems which are satisfied for these shapes but not some other convex bodies.
The point here is that for “most” theorems one would want to prove about convex bodies, if there were a
counter-example there is a good chance that one of these shapes would be it.

We now give formal definitions of the shapes mentioned.
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1. The Euclidean ball Bn
2 is the set {x ∈ Rn | ||x||22 ≤ 1}.

2. The ellipsoid E is the set {x ∈ Rn | xTAx ≤ 1} where A is a positive semidefinite n× n matrix. Note
we get the sphere when A is the identity matrix.

3. The cube Bn is the set {x R∞ ∈ n | ||x||∞ ≤ 1}.

4. The simplex C is the set {x ∈ Rn | xi ≥ 0,
∑

i xi ≤ 1}.

5. The cross-polytope Bn
1 is the set {x ∈ Rn | ||x||1 ≤ 1}, which is the convex hull of all points of the

form (0, 0, . . . , 0,±1, 0, . . . , 0). In R2 the cross-polytope and square are equivalent up to rotation of
π/4. In R3 the cross-polytope is the octahedron. In general the cross-polytope in Rn has 2n faces and
2n vertices (compare with the cube which has exactly the reverse), and acts as the “opposite” of the
cube.

2.1 Geometric Intuition in High Dimension

The first thing to notice in high dimensions is that the vast majority of volume lies near the boundary
of a convex body. For example, in R2 to get 1% of the volume of the square [−1, 1]2 we can take the
square [−.1, .1]2. In 100 dimensions to get 1% of the volume of [−1, 1]100 we would need to take the cube
[−.955, .955]100!

Big differences between balls and cubes also appear in high dimensions. For any n, to get a cube with
volume 1 in Rn we can take a cube with sidelength 1. The story for cubes is different. The volume of a
radius-r sphere in Rn is

rnπn/2

Γ(n r
2 + 1)

≈

( √
2πe

n

n

)
implying that in Rn we need to take a sphere of radius roughly

√
n/2πe to get a volume of 1. In other words,

balls in high dimensions are much smaller than cubes! Intuitively this makes sense. As we said previously,
much of the volume in high dimensions lies near the boundary. If one imagines a sphere inscribed in a cube
with sidelength equal to the sphere’s diameter, very little of the sphere is near the cube’s boundary.

Another thing to notice about high-dimensional balls is that much of the volume is concentrated around
the equator. More concretely, define v(t) as the (n− 1)-dimensional volume of Bn

2 ∩ {x0 = t}. It turns out
that v(t) drops off dramatically as t deviates from 0. Quantitatively, one can show that that

v(t)
√

≈
√

e

(
r2 − t2

n

r

) −1

Thus, if one wishes to know what distance from the equator one has to slice to get, say, 96% of the sphere’s
volume, one can solve for t in the equation t

v )dt
t

(t = .96vol(Bn is− 2 ) to find that the required value of t
quite small as a function of n (we leave the computation

∫
to the interested reader).

2.2 Maximizing Volume with a Given Surface Area

One important question in convex geometry is the following: “What is the most volume that can be enclosed
in a convex body with a given surface area?”. In R2 we can view the problem as us being given a string
of some finite length and must arrange the string in the plane so as to maximize the area it encloses. The
shape achieving this maximum area is of course the circle, but the proof is not trivial. We show a false proof
that stood for quite some time before its major flaw was uncovered:

1. Let C be the shape achieving the maximum area. We can assume C is convex since if the line segment
between x and y for some x, y ∈ C is not in C, we can reflect about the segment xy to increase area.
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2. We can assume C is symmetric about both the x and y axes. If not, first reflect the smaller-perimeter
half of C about a line parallel to the x axis that bisects C’s area. Then, do the same for y. If the
resulting shape has smaller perimeter than C we arrive at a contradiction, since that extra “piece of
string” could be used to increase the area of C. Otherwise, shift C so that its center is the origin
(implying (x, y) ∈ C ⇔ (−x,−y) ∈ C).

3. If C is not a circle, let p be the point on C’s boundary that is farthest away such that there exists a
p′ equidistant from the origin with p such that p′ is not on the boundary of C. Reflect about the line
that bisects the angle between p and p′ so that C contains both p and p′. The area of the new shape
is the same as that of C.

The main problem with this proof is in Step 1. One cannot simply assume that there exists a shape C
which maximizes the area. In particular, to perform this type of argument one would first have to show that
some metric defined on the space of convex bodies is complete.
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