
18.413: ErrorCorrecting Codes Lab March 4, 2004 

Lecture 9 

Lecturer: Daniel A. Spielman 

9.1 Related Reading 

• Fan, Chapter 2, Sections 3 and 4. 

• Programming Tips #10: Working with GF (2) matrices. 

9.2 LDPC Codes 

We will examine the simplest and most natural lowdensity paritycheck (LDPC) codes. These are 
specified by a check matrix in which each column has 3 ones and each row has 6. There should be 
twice as many columns as rows. Thus, the resulting code will have rate around 1/2. (It could be 
more if the rows turn out not to be a basis) 

In particular, we will need to generate such a check matrix at random. 

The most natural (to me) way to do this is to view the check matrix as specifying a graph. We 
will have one bit node for each column, and one check node for each row. We will form a bipartite 
graph between the bits nodes and check nodes, with an edge connecting a bit node to a check node 
if the corresponding entry in the matrix is 1. 

Thus, we need to form a random bipartite graph between a set of n bit nodes and a set of n/2 
check nodes, in which each bit node has degree 3 and each check node has degree 6. To choose a 
random graph with these parameters, consider the sockets on each side, where a socket is a place 
where an edge is attached. So, each bit node has 3 sockets and each check node has 6. You can 
form a random graph by matching up the bit node sockets and the check node sockets, using a 
random permutation. 

The problem you will encounter is that you might form two edges between some bit node and some 
check node. To fix this, you could either just try again (and stop when you get a propper graph), or 
alter your permutation. I prefer to alter the permutation by performing a random edge exchange: 
take one of the duplicated edges, choose another edge at random, and swap their endpoints on one 
side. Repeat this until you’ve eliminated all the defects from the graph. 

91




Lecture 9: March 4, 2004 92 

9.3 Decoding 

Decoding will be by belief propogation on the normal graph. The normal graph looks a lot like the 
graph described above, except that 

• For each bit node, it has an extra edge with just one endpoint 

• Each bit node is called an equallity constraint (which corresponds to a repetition code) 

• Each check node is called a parity constraint 

• There is a variable on each edge. 

At the beginning of the algorithm, each of the interal edges (those with two endpoints) is initialized 
to representing equal probabilities of 0 and 1, and the variables on the external edges (those with 
degree one attached to the bit nodes) correspond to the received signal from the channel. Thus, 
they have some prior probability of being 0 or 1. 

The algorithm will alternate between two types of phases: equality phases and check phases. During 
an equality phase, each equality constraint receives an intrinsic probability for the variable on each 
of its edges. It then sends out an extrinsic probability to the variables on each of its edges. This 
extrinsic probability is the probability that the corresponding bit is 1, given the other intrinsic 
probabilities. Note that since this is an extrinsic probability, it does not depend up the intrinsic 
probability for that variable. 

The same thing happens during a parity phase, except that the probability is computed using the 
fact that the associated variables have to have parity 0. 

As the phases alternate, the extrinsic probabilities output by one phase become the intrinsic prob
abilities input to the other. 

While the treatment of intrinsic probabilities is identical to that of prior probabilities, we call them 
intrisic instead of prior because they might not be the actual priors. 

By the rule above, during each equality phase, a message is sent to the oneendpoint edge attached 
to each bit node. This message is almost what the output of the decoder should be. The defect is 
that this message is an extrinsic probability, and the decoder should output a posterior probability. 
To fix this, just combine the extrinsic probability for that edge with the prior probability (which 
came from the channel). After any number of iterations, one can do this to get the guess currently 
running through the system. As the number of iterations grows, these guesses should converge. 

9.4 Why? 

I just gave you the algorithm, but I failed to describe why it has the form it does. Here’s the reason: 
if we had a tree instead of a graph, and we wanted to get the estimate for each node, this is the 
algorthm we would use. In this case, the graph is not a tree. But, we are pretending that it is one. 



Lecture 9: March 4, 2004 93


9.5 SNR, dB 

The standard way to report the standard deviation of the Gaussian channel is through the signal
tonoise ratio (SNR). Symbolically, this is written Eb/N0, and if we are using ±1 signalling, it is 
defined to be 

Eb 1 
= 

N0 2Rσ2 
, 

where R is the rate of the code you are using. 

To complicate things further, SNR is usually recorded in decibels. That is 10 log10(Eb/N0) dB. So, 
if I ask you for 1.5dB, that means you should set Eb/N0 so that 10 log10(Eb/N0) = 1.5. That is, 

Eb = 101.5/10 = 1.4125. 
N0 

Then, you need to reverse this formula again to solve for σ, which in this case is σ = 0.8414. So, 
when Eb/N0 goes up, σ goes down. 


