
1 

Massachusetts Institute of Technology Handout 
18.413: ErrorCorrecting Codes Laboratory March 4, 2004 
Professor Daniel A. Spielman 

Project 1


In this project, you are going to implement the simplest lowdensity paritycheck codes, and see 
how well they work. 

Due: Thursday, April 1, 2004 

This project has three phases 

• Implementation 

• Generating Data 

• Explaining the data and implementation 

I’ll explain what you should do for each in turn. 

Implementation 

Your implementations will have six parts: 

A. sparse graph generator 

B. encoder 

C. Channel simulators, 

D. decoder, 

E. evaluator that compares the output of the decoder to the input to the encoder (or output of 
the encoder). 

F. code to drive all these 

These parts should all be separable so that you can test each individually. This will also allow 
you change components. Many of you will be using parts of these components in your final projects. 

Let’s examine each in more detail. 

A. sparse graph generator 

A lowdensity paritycheck code is specified by a sparse graph. You should create code that 
generates this graph. In this project, it will be a graph between n bit nodes of degree 3 and 
n/2 check nodes of degree 6. n should be 10,000 if possible, and 3,000 if that is too slow. Note 
that very different results may be seen for different n. Your code should save this graph so 
that other components may pick it up. You should also save the graphs you use so that your 
experiments can be reproduced. If you use matlab, you will find the save command useful 
for storing data. (type help save to learn more) The functional form of save is especially 
useful (like save(’graph.dat’,’G’)) 

1 



If you code in C, don’t use the routine rand() to generate your random graph. The resulting 
graph turns out not to be very random. (and probably won’t work for our purposes) Try 
instead the pseudorandom number generator I posted on the course web page. 

If you use Matlab, you might find the commands repmat or randperm useful. 

B. encoder 

To encode a LDPC code, it is easiest to make a generator matrix that is dual to your low
density check matrix. You can then generate a random codeword by multiplying a random 
vector by the matrix. It would be best if the matrix were systematic (contain the identity 
matrix as a submatrix) so that the message bits appear in the codeword. The most natural 
way to compute the generator matrix is to observe that it is a dual of the check matrix, 
and then compute it using my code FormDualMod2.c. This code is described in a separate 
document. You can either use FormDualMod2.c as a C program that can be called from

matlab, or you can rip routines from it to incorporate into you own C code.


It will take a lot of time to encode your LDPC codes. So, you might want to initially

test your code on the all0 or all1 codewords (note that both of these will be codewords). 
But, to generate reasonable results, you should really do tests on random codewords. That 
said, generating codewords is so expensive that it would not make sense to generate a fresh 
codeword for each test. My suggestion would be to generate a small set of codewords, say 
10 to 50, save them, and use them for your experiments. In this case you should be sure 
to cycle through each codeword the same number of times in each experiment. That is, if 
you are doing 1000 runs at 1.4 dB, then you should use each codeword the same number of 
times in these experiments. Some of you will note that if you use an ideal implementation of 
the decoder, then your simulations will give the same performance if you start with random 
codewords or the all0 codeword. However, numerical errors could skew the results of your 
simulation in unpredictable ways. 

C. channel simulators, 

We’ll test these codes on 3 different channels: the Binary Erasure Channel with erasure 
probability p, the Binary Symmetric Channel with crossover probability p, and the Gaussian 
channel with ±1 signaling. You should design a separate module for each that takes as input 
a codeword and ouputs the result of passing the codeword through the channel. At some 
point (here or in the decoder), you will need to estimate the probability that each codeword 
bit was 1 (or 0) given the output of the channel. If you like, you may make this output the 
result of the channel simulator. For example, if you are transmitting over the BSCp, and the 
channel outputs 0, 0, 1, then you could report this as p, p, 1− p. 

D. decoder 

This is where most of the work will be. The decoder should take as input the graph defining 
the check matrix of the lowdensity paritycheck code, as well as the output from the channel. 
The decoder should then output a guess for the value of each bit of the codeword (or, just a

guess for each message bit).


Let me restate how the decoder should work. The decoder proceedes in stages, and at

each stage it passes a message along the edges of the graph. It begins with an initial stage, 
alternates between check node and bit node stages, and finishes with a terminal stage. 

2 



•	 Initial stage: in the initial stage, each bit node sends a message along each of its 
outgoing edges indicating the probability that the bit at that node was 1 given the 
output of the channel for that bit. 

•	 Check node stage: in a checkstage, each check node receives a message coming in on 
each of its edges, and sends a message back out on each edge. Let’s say that a check 
node is a neighbor of bit nodes m1, . . . ,m6, and that it receives the messages p1, . . . , p6. 
Let q1, . . . , q6 denote the messages that the check node sends out. Then, q1 should be the 
probability that bit b1 is 1 given that the sum mod 2 of b1, . . . , b6 in the original codeword 
was 0, that the probability that bi equals 1 is pi, for i ≥ 2, and that these probabilities 
are independent. (while the values we have for p2, . . . , p6 might not actually represent 
independent events, we define our calculation by assuming that they are independent). 
That is q1 is a function of p2, . . . , p6 but not of p1. The other qi’s are similarly defined. 
If you study the computations for q1, . . . , q6, you should find that it is possible to compute 
these jointly much faster than computing each one at a time (i.e., their expressions share 
common terms). 

•	 bit node stage: in a bit node stage, each bit node receives a message coming in on 
each of its edges, and sends a message back out on each edge. Let’s say that a bit node 
represents bit b, is a neighbor of check nodes c1, . . . , c3, and that it receives the messages 
q1, . . . , p3. Let p1, . . . , p3 denote the messages that the bit node sends out. Also, let q0 

denote the probability that the message bit itself is 1, given the output of the channel for 
that bit. (yes, we used that information in the initial stage, and we’ll use it again here). 
We will compute p1 to be the probability that bit b is 1 given the observations q0, q2, q3. 
That is, we imagine that b was transmitted in the (1,4) repetition code, that q0, q2, q3 

are the channel outputs from three of the repetitions, and we transmit the maximum 
likelihood estimator obtained from these three estimates as p1. We similarly compute 
p2 and p3, again using the rule that pi is a function of all the qs by qi. 
As with the checknode stage, it should be possible to compute these much faster jointly 
than individually. 

•	 terminal stage A terminal stage should follow a check stage, and is used to make the 
final guesses about the values of the bits. It does this by taking all incoming messages 
for each bit, say q1, q2, q3 and the output of the channel for that bit, q0, assumes that 
these are independent observations of the bit, and uses them to make the best estimate 
of the value of the bit. That is, we assume that the bit was transmitted using a repetition 
code. 
This is just like what we do in a bitnode stage, except that we don’t exclude any of the 
messages. In fact, this operation can be incorporated into a bit node stage. 

The output of the decoder should be a vector of 0s and 1s consisting of the guesses. 

There are many ways to decide how many rounds of this algorithm to run. One way is to 
just fix some number (make it at least 20). Another is to incorporate a terminal stage into 
each bitnode stage, and check how many bits are changing value with each iteration. One 
could decide to stop when none, or very few, change for a few rounds. You should do some 
experiments to get a feel for what works. 

3 



While I have described the messages being passes along the edges as probabilities, you should 
feel free to encode them however you like (e.g., as likelihoods, log likelihoods, log probabilities, 
etc.) 

One thing to be careful of when implementing the decoder is that many of the probabilities 
will approach 0 or 1. However, this may cause divisionbyzero errors, or trouble if you ever 
take a logarithm of 0. There are many ways to circumvent these problems. One is to force all 
probabilities to lie between � and 1− � for some � > 0 that you pick. I’m sure you can think 
of other ways as well. There will often be a tradeoff between speed and precision in how you 
handle this. 

E. evaluator: this will compare the output of the decoder to the input to the encoder (or output 
of the encoder), and compute the word error rate and bit error rate. If you used a systematic 
generator matrix, then you should just score bit errors on the message (systematic) bits. 

If you did not use a systematic generator matrix, then count the fraction of bit errors among 
all the bits. There is some theory that indicates that this value shouldn’t be all that different. 

F. driver code: I’m sure that you will want to generate some scripts to tie all these together. 
Of course, when you first test your code you will want to do this part manually. Make sure 
that your driver code occasionally reports what it is doing. This way you will still save some 
information even if your job dies. 

A random thought: if you’d like to test your system on a small code, you could always use the 
(9, 4) product code from Small Project 2. It has 9 bit nodes of degree 2 and 6 check nodes of degree 
3. 

Arvind makes the following suggestions regarding longjobs: 

•	 Make sure that your script runs in the tshell, tcsh. This is the default on athena. But, if 
you use bash, you can have trouble. 

•	 Your script should add matlab. You should then probably call matlab like matlab nodisplay 
< your script.m, where your script is a matlab script file (just a bunch of commands that 
don’t begin with function). 

•	 Don’t forget to add a quit command at the end of your script so that the job will stop. 

•	 Test your longjobs on a short job so you can be sure it works! 

•	 Time your code on small runs so that you can figure out how many runs you can fit into long 
bursts (of say 8 or 24 hours). 

Generating Data 

If your code is fast enough, then you should work with codes of blocklength n = 10, 000. If that is 
too slow, try n = 3, 000. 

Note that your results will be different with different blocklengths. 
You will generate various types of reports. The first type is the standard channel vs. BER 

plots. For these, you should simulate your system over 

4 

2 



•	 The Binary Erasure Channel with erasure probabilities p = .4, .42, .44, .46. If you have more 
time, feel free to try a finer gradation. 

•	 The BSC with crossover probabilities p = .6, .7, .8. If you have time, also try .65 and .75. 

•	 The Gaussian channel at Eb/N0 = 1.2, 1.3, 1.4 and 1.5dB. Note that Eb/N0 = Es/(RN0), so 
for R = 1/2 we have Eb/N0 = 1/σ2 . 

Run at least 100 iterations for each. Try to run 1000 iterations for those on which the system 
performs better (we need to work harder to observe failures when they are rare). 

The next type of output we would like to generate is some that will help us understand how our 
algorithm is behaving. One thing we would like to understand is how much progress the algorithm 
is making at each iteration. We can measure this by simulating a terminal stage after each check
node stage, and counting how many bits it gets right. We can then plot the number of iterations 
on the Xaxis and the BER if we were to stop at that point on the Yaxis. Do this twice: once at 
a noise level for which the algorithm tends to work, and once at a noise level for which it tends to 
fail. You could combine many runs to do this. Be sure to explain how you derived the data for 
your plot. 

Finally, we would like to understand how the messages sent by the algorithm are distributed at 
each iteration (or maybe every 5 iterations). So, we will extract this data for a few simulations. Of 
course, there is a question about how one should report this data. A histogram would be natural. 
However, it might not be meaningful if most of the data is near 0 or 1. A more useful approach 
might be to output some order statistics for the data. One way of obtaining these is to sort the 
data, and, if there are n items, report the 1st, n/10th, n/5th, 3n/10th, etc. data point in the sorted 
order. This gives one some feel for distribution. Generate data like this for each iteration (or every 
2nd or 5th) of the algorithm on some run on which it succedes, and on some run on which it fails. 
It would be most interesting to see it for a run on which it barely fails. Don’t forget to explain how 
you got the data. 

3 Reporting 

Submit all code, plots, and the data used to generate plots (unless it is absurdly big). Start with 
an overview explaining what is to follow, and how your code is organized. To the extent that you 
generated data by interaction, rather than merely running the code you’ve submitted, explain what 
you did. 

Note that I’m going to actually try to read your code, so please document it well! 

4 Collaboration 

For this project you are free to discuss how you do this with others in the class (and especially to get 
technical help). But, you should write your own code. You must acknowledge your collaborators. 

5



