Massachusetts Institute of Technology

2.111J/18.435J/ESD. 79

Quantum Computation
Fall 2004
Problem Set 8
Due: Tuesday, November 16 (in class)

Problem 1. Write out

$$
U=e^{-i \pi\left(\sigma_{X} \otimes I\right) / 4} e^{-i \pi\left(\sigma_{Z} \otimes \sigma_{Z}\right) / 4} e^{-i \pi\left(\sigma_{Y} \otimes I\right) / 4}
$$

as a 4 by 4 matrix. How does it differ from a CNOT gate? How can you supplement the above circuit with single-qubit rotations to construct an exact CNOT (up to an overall phase)?

Problem 2. (Decoupling). Show that

$$
U=e^{-i \pi\left(\sigma_{X} \otimes I\right) / 2} e^{-i H t} e^{-i \pi\left(\sigma_{X} \otimes I\right) / 2} e^{-i H t}
$$

only acts on the second qubit, where

$$
H=\frac{1}{2}\left(-\omega_{1} \sigma_{Z} \otimes I-\omega_{2} I \otimes \sigma_{Z}+\gamma \sigma_{Z} \otimes \sigma_{Z}\right)
$$

Hint 1. If $\left[H_{1}, H_{2}\right]=0$, then $\exp \left(-i\left(H_{1}+H_{2}\right) t\right)=\exp \left(-i H_{1} t\right) \exp \left(-i H_{2} t\right)$.
Hint 2. You may find it useful to first find the following operations $\left(\sigma_{X} \otimes I\right) \exp \left(-i \omega t\left(\sigma_{Z} \otimes I\right) / 2\right)\left(\sigma_{X} \otimes I\right),\left(\sigma_{X} \otimes I\right) \exp \left(-i \omega t\left(I \otimes \sigma_{Z}\right) / 2\right)\left(\sigma_{X} \otimes I\right)$, and $\left(\sigma_{X} \otimes I\right) \exp \left(-i \omega t\left(\sigma_{Z} \otimes \sigma_{Z}\right) / 2\right)\left(\sigma_{X} \otimes I\right)$.

Problem 3. Create a decoupling scheme for a 3-qubit molecule with the following Hamiltonian:

$$
H=\frac{1}{2}\left(-\omega_{A} \sigma_{Z}^{A}-\omega_{B} \sigma_{Z}^{B}-\omega_{C} \sigma_{Z}^{C}+\Gamma_{A B} \sigma_{Z}^{A} \otimes \sigma_{Z}^{B}+\Gamma_{B C} \sigma_{Z}^{B} \otimes \sigma_{Z}^{C}+\Gamma_{A C} \sigma_{Z}^{A} \otimes \sigma_{Z}^{C}\right)
$$

In other words, find the decoupling operators U_{k} such that

$$
U=\prod_{k=1}^{n} U_{k} e^{-i H t}
$$

operates only on individual qubits. (You might come up with 3 or 4 decoupling operators depending on what you eventually get.)

