MASSACHUSETTS INSTITUTE OF TECHNOLOGY

2.111J/18.435J/ESD.79 Quantum Computation Fall 2004

Problem Set 4 Solutions

Problem 1. Verify that $|\rangle\rangle = \cos\frac{\theta}{2}|0\rangle + \sin\frac{\theta}{2}|1\rangle$ and $|\rangle\rangle = -\sin\frac{\theta}{2}|0\rangle + \cos\frac{\theta}{2}|1\rangle$ are the corresponding eigenvectors to, respectively, the eigenvalues +1 and -1 of the operator $\sigma = \cos\theta\sigma_Z + \sin\theta\sigma_X$.

Solution:

$$\begin{split} \sigma|\swarrow\rangle &= (\cos\theta\sigma_Z + \sin\theta\sigma_X)(\cos\frac{\theta}{2}|0\rangle + \sin\frac{\theta}{2}|1\rangle) \\ &= (\cos\theta\cos\frac{\theta}{2} + \sin\theta\sin\frac{\theta}{2})|0\rangle + (-\cos\theta\sin\frac{\theta}{2} + \sin\theta\cos\frac{\theta}{2})|1\rangle \\ &= \cos(\theta - \frac{\theta}{2})|0\rangle + \sin(\theta - \frac{\theta}{2})|1\rangle \\ &= |\swarrow\rangle \\ \sigma|\swarrow\rangle &= (\cos\theta\sigma_Z + \sin\theta\sigma_X)(-\sin\frac{\theta}{2}|0\rangle + \cos\frac{\theta}{2}|1\rangle) \\ &= (-\cos\theta\sin\frac{\theta}{2} + \sin\theta\cos\frac{\theta}{2})|0\rangle + (-\cos\theta\cos\frac{\theta}{2} - \sin\theta\sin\frac{\theta}{2})|1\rangle \\ &= \sin(\theta - \frac{\theta}{2})|0\rangle - \cos(\theta - \frac{\theta}{2})|1\rangle \end{split}$$

Problem 2. Show that

 $= - | \swarrow \rangle$

$$(|00\rangle_{AB} + |11\rangle_{AB})/\sqrt{2} = (|\nearrow\rangle_{A}|\nearrow\rangle_{B} + |\swarrow\rangle_{A}|\swarrow\rangle_{B})/\sqrt{2}$$

where $|\nearrow\rangle$ and $|\swarrow\rangle$ are defined in Problem 1.

Solution:

$$|\nearrow\rangle_{A}|\nearrow\rangle_{B} = (\cos\frac{\theta}{2}|0\rangle_{A} + \sin\frac{\theta}{2}|1\rangle_{A}) \otimes (\cos\frac{\theta}{2}|0\rangle_{B} + \sin\frac{\theta}{2}|1\rangle_{B})$$
$$= \left(\cos\frac{\theta}{2}\right)^{2}|0\rangle_{A}|0\rangle_{B} + \cos\frac{\theta}{2}\sin\frac{\theta}{2}|0\rangle_{A}|1\rangle_{B}$$

$$+\sinrac{ heta}{2}\cosrac{ heta}{2}|1
angle_{A}|0
angle_{B}+\left(\sinrac{ heta}{2}
ight)^{2}|1
angle_{A}|1
angle_{B}$$

Similarly,

$$\begin{split} |\swarrow\rangle_A |\swarrow\rangle_B &= (-\sin\frac{\theta}{2}|0\rangle_A + \cos\frac{\theta}{2}|1\rangle_A) \otimes (-\sin\frac{\theta}{2}|0\rangle_B + \cos\frac{\theta}{2}|1\rangle_B) \\ &= \left(\sin\frac{\theta}{2}\right)^2 |0\rangle_A |0\rangle_B - \cos\frac{\theta}{2}\sin\frac{\theta}{2}|0\rangle_A |1\rangle_B \\ &- \sin\frac{\theta}{2}\cos\frac{\theta}{2}|1\rangle_A |0\rangle_B + \left(\cos\frac{\theta}{2}\right)^2 |1\rangle_A |1\rangle_B \end{split}$$

Adding these two completes the proof.

Problem 3. For the state $|\psi\rangle = \frac{1}{\sqrt{2}} (|0\rangle_A \otimes |0\rangle_B + |1\rangle_A \otimes |1\rangle_B)$, it can be seen that

a)
$$\Pr(\uparrow \nearrow) \equiv \langle \psi | (|\uparrow\rangle_A \langle \uparrow | \otimes | \nearrow \rangle_B \langle \nearrow |) | \psi \rangle$$

 $= |\langle \psi | (|\uparrow\rangle_A \otimes | \nearrow \rangle_B)|^2$
 $= |_B \langle 0 | \nearrow \rangle_B |^2 / 2$
 $= \frac{1}{2} \left(\cos \frac{\theta}{2} \right)^2 = \frac{3}{8}$

where $\theta = \pi/3$ and $|\rangle\rangle$ is the +1-eigenstate of the operator σ in Problem 1. $|\uparrow\rangle = |0\rangle$ is the +1-eigenstate of σ_Z . Similarly it can be seen that

b)
$$\Pr(\uparrow \swarrow) \equiv \langle \psi | (|\uparrow\rangle_A \langle \uparrow | \otimes | \swarrow \rangle_B \langle \swarrow |) | \psi \rangle = \frac{1}{2} \left(\sin \frac{\theta}{2} \right)^2 = \frac{1}{8}$$

c)
$$\Pr(\downarrow\nearrow) \equiv \langle \psi | (|\downarrow\rangle_A \langle \downarrow | \otimes |\nearrow\rangle_B \langle \nearrow |) | \psi \rangle = \frac{1}{2} \left(\sin \frac{\theta}{2} \right)^2 = \frac{1}{8}$$

d)
$$\Pr(\downarrow\swarrow) \equiv \langle \psi | (|\downarrow\rangle_A \langle \downarrow| \otimes |\swarrow\rangle_B \langle \swarrow|) | \psi \rangle = \frac{1}{2} \left(\cos \frac{\theta}{2} \right)^2 = 3/8$$

where $\theta = \pi/3$ and $|\swarrow\rangle$ is the (-1)-eigenstate of the operator σ in Problem 1. $|\downarrow\rangle = |1\rangle$ is the (-1)-eigenstate of σ_Z .

Problem 4. For the GHZ state

$$|\psi\rangle = (|0\rangle_A |0\rangle_B |0\rangle_C + |1\rangle_A |1\rangle_B |1\rangle_C) / \sqrt{2}$$

evaluate the following expectation values:

$$\left\langle \sigma_X^A \otimes \sigma_Y^B \otimes \sigma_Y^C \right\rangle = -1 \\ \left\langle \sigma_Y^A \otimes \sigma_X^B \otimes \sigma_Y^C \right\rangle = -1 \\ \left\langle \sigma_Y^A \otimes \sigma_Y^B \otimes \sigma_X^C \right\rangle = -1 \\ \left\langle \sigma_X^A \otimes \sigma_X^B \otimes \sigma_X^C \right\rangle = +1$$

Solution:

$$\begin{split} \sigma_X^A \otimes \sigma_Y^B \otimes \sigma_Y^C |\psi\rangle &= \sigma_X^A \otimes \sigma_Y^B \otimes \sigma_Y^C (|0\rangle_A |0\rangle_B |0\rangle_C + |1\rangle_A |1\rangle_B |1\rangle_C) / \sqrt{2} \\ &= (|1\rangle_A i |1\rangle_B i |1\rangle_C + |0\rangle_A (-i) |0\rangle_B (-i) |0\rangle_C) / \sqrt{2} \\ &= -|\psi\rangle \\ \Rightarrow \\ &\left\langle \sigma_X^A \otimes \sigma_Y^B \otimes \sigma_Y^C \right\rangle \equiv \left\langle \psi \right| \sigma_X^A \otimes \sigma_Y^B \otimes \sigma_Y^C \right| \psi \\ &= -1 \end{split}$$

$$\begin{aligned} \sigma_Y^A \otimes \sigma_X^B \otimes \sigma_Y^C |\psi\rangle &= \sigma_Y^A \otimes \sigma_X^B \otimes \sigma_Y^C (|0\rangle_A |0\rangle_B |0\rangle_C + |1\rangle_A |1\rangle_B |1\rangle_C)/\sqrt{2} \\ &= (i|1\rangle_A |1\rangle_B i|1\rangle_C + (-i)|0\rangle_A |0\rangle_B (-i)|0\rangle_C)/\sqrt{2} \\ &= -|\psi\rangle \end{aligned}$$

 \Rightarrow

$$\left\langle \sigma_Y^A \otimes \sigma_X^B \otimes \sigma_Y^C \right\rangle = -1$$

Similarly,

$$\sigma_Y^A \otimes \sigma_Y^B \otimes \sigma_X^C |\psi\rangle = -|\psi\rangle \Longrightarrow \left\langle \sigma_Y^A \otimes \sigma_Y^B \otimes \sigma_X^C \right\rangle = -1$$

But,

$$\sigma_X^A \otimes \sigma_X^B \otimes \sigma_X^C |\psi\rangle = |\psi\rangle \Longrightarrow \left\langle \sigma_X^A \otimes \sigma_X^B \otimes \sigma_X^C \right\rangle = 1.$$

 $\sigma_X^A \otimes \sigma_Y^B \otimes \sigma_Y^C$ is the operator that corresponds to taking a measurement of σ_X^A on A, σ_Y^B on B, σ_Y^C on C, and multiplying the results, e.g. getting +1 for A, -1 for B, and -1 for C, the result is (+1)(-1)(-1)=+1! Do you notice anything paradoxical in the above results?

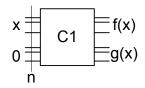
Solution:

From a classical point of view, we can correspond a random variable S_i^j to the result of measurement of σ_i^j , which accepts only values +1 and -1, each with some probability. This is also the case for the product of random variables of this form. For example, $S_Y^A S_X^B S_Y^C$ can only accept values +1 and -1, and therefore, its expected value should fall in [-1,+1]. However, according to our calculations, this expected value is exactly -1, which can only occur iff $S_Y^A S_X^B S_Y^C = -1$ with probability one! Using the same argument, one can obtain

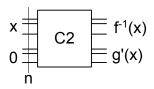
$$\begin{split} S^A_X \times S^B_Y \times S^C_Y &= -1 \\ S^A_Y \times S^B_X \times S^C_Y &= -1 \\ S^A_Y \times S^B_Y \times S^C_X &= -1 \\ S^A_X \times S^B_X \times S^C_X &= +1 \end{split}$$

The paradox arises from the fact that the total product of the terms on the left hand side of the above equations is a square, and therefore, always nonnegative, but from the values on the right hand side, we get -1!

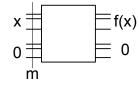
Problem 5. Suppose f is a one-to-one function, which can be constructed using the following circuit:



This circuit has C_1 gates and accepts n bits at the input (including data bits x and work bits 0). g(x) is the data loaded on the work space after the operation of the circuit. f^{-1} can also be constructed using the following circuit with C_2 gates:



Show that there exists a reversible circuit with the following operation that uses only $k(C_1 + C_2 + n)$ gates where k is a small constant:



Solution:

$$x + C1 + f(x) + C1^{-1} + x + 0$$

$$0 + g(x) + C1^{-1} + 0 + 0$$

$$0 + f(x) + C2 + x + x + C2^{-1} + f(x)$$

$$0 + g'(f(x)) + C2 + g'(f(x)) + C2^{-1} + 0$$

where $C1^{-1}$ and $C2^{-1}$ are the reverse circuits to C1 and C2. The above circuit uses less than $2(C_1 + C_2 + n)$ gates.

Problem 6. Find what CNOT looks like in the basis $\{|++\rangle, |+-\rangle, |-+\rangle, |--\rangle\}$. (write down the corresponding matrix representation.)

Solution:

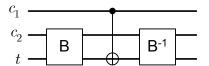
See Exercise 4.20, and equations (4.24)—(4.27). The corresponding matrix looks like this:

$U_{CNOT} =$	[1	0	0	0]	
	0	0	0	1	
	0	0	1	0	
	0	1	0	0	

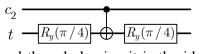
Problem 7. Exercise 4.26 from the Nielsen and Chuang book. Note that the first two rotations, from left, are $R_y(\pi/4)$ and the last two are $R_y(-\pi/4)$ where $R_y(\theta) = \exp(-i\sigma_V \theta/2)$.

Solution:

The circuit in Exercise 4.26 can be redrawn as follows:



where the block B is as follows:



If $c_1 = 0$, then $BB^{-1} = I$, and the whole circuit is the identity operator. Let's assume $c_1 = 1$. Then,

if $c_2=0$, then $B=I\otimes (R_y(\pi/4))^2=I\otimes R_y(\pi/2)=I\otimes (I-i\sigma_Y)/\sqrt{2}$ if $c_2=1$, then

$$B = I \otimes R_y(\pi/4)\sigma_{\chi}R_y(\pi/4)$$

where using $\alpha \triangleq \cos(\pi/8)$ and $\beta \triangleq \sin(\pi/8)$, and $\sigma_Y \sigma_X \sigma_Y = i\sigma_Y \sigma_Z = -\sigma_X$

$$\begin{split} R_y(\pi/4)\sigma_X R_y(\pi/4) &= (\alpha I - i\beta\sigma_Y)\sigma_X(\alpha I - i\beta\sigma_Y) \\ &= \alpha^2\sigma_X - i\alpha\beta\{\sigma_Y, \sigma_X\} - \beta^2\sigma_Y\sigma_X\sigma_Y \\ &= (\alpha^2 + \beta^2)\sigma_X = \sigma_X, \end{split}$$

we have

$$B = I \otimes \sigma_{\chi}, c_2 = 1$$

Using the above relations, one can obtain

$$B|0\rangle|0\rangle = |0\rangle|+\rangle$$

$$B|0\rangle|1\rangle = |0\rangle|-\rangle$$

$$B|1\rangle|0\rangle = |1\rangle|1\rangle$$

$$B|1\rangle|1\rangle = |1\rangle|0\rangle$$

The CNOT gate between the first control bit and the test bit, changes $|1\rangle$ to $|0\rangle$ and vice verca, and therefore, it is easy to verify that the first circuit behaves like a Toffoli gate except for the input $|1\rangle_{c_1} |0\rangle_{c_2} |1\rangle_t$ for which there exist an extra factor -1.

Problem 8. Using a bit-query black box, which acts as follows

 $|X\rangle \otimes |b\rangle \longrightarrow |X\rangle \otimes |b \oplus f(X)\rangle$

make a phase-query black box with the following operation:

$$|X\rangle \longrightarrow (-1)^{f(X)} |X\rangle$$

where $X = b_1 b_2 \dots b_n$ in the binary representation and $|X\rangle = |b_1\rangle |b_2\rangle \dots |b_n\rangle$.

Solution:

See Section 6.1.1, equations (6.1)–(6.3).