Massachusetts Institute of Technology

2.111J/18.435J/ESD. 79

Quantum Computation
Fall 2004

Problem Set 4

Solutions

Problem 1. Verify that $|\nearrow\rangle=\cos \frac{\theta}{2}|0\rangle+\sin \frac{\theta}{2}|1\rangle$ and $|\swarrow\rangle=-\sin \frac{\theta}{2}|0\rangle+\cos \frac{\theta}{2}|1\rangle$ are the corresponding eigenvectors to, respectively, the eigenvalues +1 and -1 of the operator $\sigma=\cos \theta \sigma_{Z}+\sin \theta \sigma_{X}$.

Solution:

$$
\begin{aligned}
\sigma|\nearrow\rangle & =\left(\cos \theta \sigma_{Z}+\sin \theta \sigma_{X}\right)\left(\cos \frac{\theta}{2}|0\rangle+\sin \frac{\theta}{2}|1\rangle\right) \\
& =\left(\cos \theta \cos \frac{\theta}{2}+\sin \theta \sin \frac{\theta}{2}\right)|0\rangle+\left(-\cos \theta \sin \frac{\theta}{2}+\sin \theta \cos \frac{\theta}{2}\right)|1\rangle \\
& =\cos \left(\theta-\frac{\theta}{2}\right)|0\rangle+\sin \left(\theta-\frac{\theta}{2}\right)|1\rangle \\
& =|\nearrow\rangle \\
\sigma|\swarrow\rangle & =\left(\cos \theta \sigma_{Z}+\sin \theta \sigma_{X}\right)\left(-\sin \frac{\theta}{2}|0\rangle+\cos \frac{\theta}{2}|1\rangle\right) \\
& =\left(-\cos \theta \sin \frac{\theta}{2}+\sin \theta \cos \frac{\theta}{2}\right)|0\rangle+\left(-\cos \theta \cos \frac{\theta}{2}-\sin \theta \sin \frac{\theta}{2}\right)|1\rangle \\
& =\sin \left(\theta-\frac{\theta}{2}\right)|0\rangle-\cos \left(\theta-\frac{\theta}{2}\right)|1\rangle \\
& =-|\swarrow\rangle
\end{aligned}
$$

Problem 2. Show that

$$
\left(|00\rangle_{A B}+|11\rangle_{A B}\right) / \sqrt{2}=\left(|\nearrow\rangle_{A}|\nearrow\rangle_{B}+|\swarrow\rangle_{A}|\swarrow\rangle_{B}\right) / \sqrt{2}
$$

where $|\nearrow\rangle$ and $|\swarrow\rangle$ are defined in Problem 1.

Solution:

$$
\begin{aligned}
|\nearrow\rangle_{A}|\nearrow\rangle_{B} & =\left(\cos \frac{\theta}{2}|0\rangle_{A}+\sin \frac{\theta}{2}|1\rangle_{A}\right) \otimes\left(\cos \frac{\theta}{2}|0\rangle_{B}+\sin \frac{\theta}{2}|1\rangle_{B}\right) \\
& =\left(\cos \frac{\theta}{2}\right)^{2}|0\rangle_{A}|0\rangle_{B}+\cos \frac{\theta}{2} \sin \frac{\theta}{2}|0\rangle_{A}|1\rangle_{B}
\end{aligned}
$$

$$
+\sin \frac{\theta}{2} \cos \frac{\theta}{2}|1\rangle_{A}|0\rangle_{B}+\left(\sin \frac{\theta}{2}\right)^{2}|1\rangle_{A}|1\rangle_{B}
$$

Similarly,

$$
\begin{aligned}
|\swarrow\rangle_{A}|\swarrow\rangle_{B}= & \left(-\sin \frac{\theta}{2}|0\rangle_{A}+\cos \frac{\theta}{2}|1\rangle_{A}\right) \otimes\left(-\sin \frac{\theta}{2}|0\rangle_{B}+\cos \frac{\theta}{2}|1\rangle_{B}\right) \\
= & \left(\sin \frac{\theta}{2}\right)^{2}|0\rangle_{A}|0\rangle_{B}-\cos \frac{\theta}{2} \sin \frac{\theta}{2}|0\rangle_{A}|1\rangle_{B} \\
& -\sin \frac{\theta}{2} \cos \frac{\theta}{2}|1\rangle_{A}|0\rangle_{B}+\left(\cos \frac{\theta}{2}\right)^{2}|1\rangle_{A}|1\rangle_{B}
\end{aligned}
$$

Adding these two completes the proof.
Problem 3. For the state $|\psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right)$, it can be seen that
a) $\operatorname{Pr}(\uparrow \nearrow) \equiv\langle\psi|\left(|\uparrow\rangle_{A}\langle\uparrow| \otimes|\nearrow\rangle_{B}\langle\nearrow|\right)|\psi\rangle$

$$
=\mid\left.\langle\psi|\left(|\uparrow\rangle_{A} \otimes|\nearrow\rangle_{B}\right)\right|^{2}
$$

$$
=\left|{ }_{B}\langle 0 \mid \nearrow\rangle_{B}\right|^{2} / 2
$$

$$
=\frac{1}{2}\left(\cos \frac{\theta}{2}\right)^{2}=\frac{3}{8}
$$

where $\theta=\pi / 3$ and $|\nearrow\rangle$ is the +1 -eigenstate of the operator σ in Problem 1. $|\uparrow\rangle=|0\rangle$ is the +1 -eigenstate of σ_{Z}. Similarly it can be seen that
b) $\operatorname{Pr}(\uparrow \swarrow) \equiv\langle\psi|\left(|\uparrow\rangle_{A}\langle\uparrow| \otimes|\swarrow\rangle_{B}\langle\swarrow|\right)|\psi\rangle=\frac{1}{2}\left(\sin \frac{\theta}{2}\right)^{2}=\frac{1}{8}$
c) $\operatorname{Pr}(\downarrow \nearrow) \equiv\langle\psi|\left(|\downarrow\rangle_{A}\langle\downarrow| \otimes|\nearrow\rangle_{B}\langle\nearrow|\right)|\psi\rangle=\frac{1}{2}\left(\sin \frac{\theta}{2}\right)^{2}=\frac{1}{8}$
d) $\operatorname{Pr}(\downarrow \swarrow) \equiv\langle\psi|\left(|\downarrow\rangle_{A}\langle\downarrow| \otimes|\swarrow\rangle_{B}\langle\swarrow|\right)|\psi\rangle=\frac{1}{2}\left(\cos \frac{\theta}{2}\right)^{2}=3 / 8$
where $\theta=\pi / 3$ and $|\swarrow\rangle$ is the (-1)-eigenstate of the operator σ in Problem 1. $|\downarrow\rangle=|1\rangle$ is the (-1)-eigenstate of σ_{Z}.

Problem 4. For the GHZ state

$$
|\psi\rangle=\left(|0\rangle_{A}|0\rangle_{B}|0\rangle_{C}+|1\rangle_{A}|1\rangle_{B}|1\rangle_{C}\right) / \sqrt{2}
$$

evaluate the following expectation values:

$$
\begin{aligned}
& \left\langle\sigma_{X}^{A} \otimes \sigma_{Y}^{B} \otimes \sigma_{Y}^{C}\right\rangle=-1 \\
& \left\langle\sigma_{Y}^{A} \otimes \sigma_{X}^{B} \otimes \sigma_{Y}^{C}\right\rangle=-1 \\
& \left\langle\sigma_{Y}^{A} \otimes \sigma_{Y}^{B} \otimes \sigma_{X}^{C}\right\rangle=-1 \\
& \left\langle\sigma_{X}^{A} \otimes \sigma_{X}^{B} \otimes \sigma_{X}^{C}\right\rangle=+1
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \sigma_{X}^{A} \otimes \sigma_{Y}^{B} \otimes \sigma_{Y}^{C}|\psi\rangle= \sigma_{X}^{A} \otimes \sigma_{Y}^{B} \otimes \sigma_{Y}^{C}\left(|0\rangle_{A}|0\rangle_{B}|0\rangle_{C}+|1\rangle_{A}|1\rangle_{B}|1\rangle_{C}\right) / \sqrt{2} \\
&=\left(|1\rangle_{A} i|1\rangle_{B} i|1\rangle_{C}+|0\rangle_{A}(-i)|0\rangle_{B}(-i)|0\rangle_{C}\right) / \sqrt{2} \\
&=-|\psi\rangle \\
& \Rightarrow \quad\left\langle\sigma_{X}^{A} \otimes \sigma_{Y}^{B} \otimes \sigma_{Y}^{C}\right\rangle \equiv\langle\psi| \sigma_{X}^{A} \otimes \sigma_{Y}^{B} \otimes \sigma_{Y}^{C}|\psi\rangle \\
&=-1
\end{aligned} \quad \begin{aligned}
\sigma_{Y}^{A} \otimes \sigma_{X}^{B} \otimes \sigma_{Y}^{C}|\psi\rangle= & \sigma_{Y}^{A} \otimes \sigma_{X}^{B} \otimes \sigma_{Y}^{C}\left(|0\rangle_{A}|0\rangle_{B}|0\rangle_{C}+|1\rangle_{A}|1\rangle_{B}|1\rangle_{C}\right) / \sqrt{2} \\
= & \left(i|1\rangle_{A}|1\rangle_{B} i|1\rangle_{C}+(-i)|0\rangle_{A}|0\rangle_{B}(-i)|0\rangle_{C}\right) / \sqrt{2} \\
= & -|\psi\rangle \\
\Rightarrow \quad & \\
\quad & \left\langle\sigma_{Y}^{A} \otimes \sigma_{X}^{B} \otimes \sigma_{Y}^{C}\right\rangle=-1
\end{aligned}
$$

Similarly,

$$
\sigma_{Y}^{A} \otimes \sigma_{Y}^{B} \otimes \sigma_{X}^{C}|\psi\rangle=-|\psi\rangle \Rightarrow\left\langle\sigma_{Y}^{A} \otimes \sigma_{Y}^{B} \otimes \sigma_{X}^{C}\right\rangle=-1
$$

But,

$$
\sigma_{X}^{A} \otimes \sigma_{X}^{B} \otimes \sigma_{X}^{C}|\psi\rangle=|\psi\rangle \Rightarrow\left\langle\sigma_{X}^{A} \otimes \sigma_{X}^{B} \otimes \sigma_{X}^{C}\right\rangle=1
$$

$\sigma_{X}^{A} \otimes \sigma_{Y}^{B} \otimes \sigma_{Y}^{C}$ is the operator that corresponds to taking a measurement of σ_{X}^{A} on A , σ_{Y}^{B} on $\mathrm{B}, \sigma_{Y}^{C}$ on C , and multiplying the results, e.g. getting +1 for $\mathrm{A},-1$ for B , and -1 for C, the result is $(+1)(-1)(-1)=+1$! Do you notice anything paradoxical in the above results?

Solution:

From a classical point of view, we can correspond a random variable S_{i}^{j} to the result of measurement of σ_{i}^{j}, which accepts only values +1 and -1 , each with some probability. This is also the case for the product of random variables of this form. For example, $S_{Y}^{A} S_{X}^{B} S_{Y}^{C}$ can only accept values +1 and -1 , and therefore, its expected value should fall in $[-1,+1]$. However, according to our calculations, this expected value is exactly -1 , which can only occur iff $S_{Y}^{A} S_{X}^{B} S_{Y}^{C}=-1$ with probability one! Using the same argument, one can obtain

$$
\begin{aligned}
S_{X}^{A} \times S_{Y}^{B} \times S_{Y}^{C} & =-1 \\
S_{Y}^{A} \times S_{X}^{B} \times S_{Y}^{C} & =-1 \\
S_{Y}^{A} \times S_{Y}^{B} \times S_{X}^{C} & =-1 \\
S_{X}^{A} \times S_{X}^{B} \times S_{X}^{C} & =+1
\end{aligned}
$$

The paradox arises from the fact that the total product of the terms on the left hand side of the above equations is a square, and therefore, always nonnegative, but from the values on the right hand side, we get -1 !

Problem 5. Suppose f is a one-to-one function, which can be constructed using the following circuit:

This circuit has C_{1} gates and accepts n bits at the input (including data bits x and work bits 0). $g(x)$ is the data loaded on the work space after the operation of the circuit. f^{-1} can also be constructed using the following circuit with C_{2} gates:

Show that there exists a reversible circuit with the following operation that uses only $k\left(C_{1}+C_{2}+n\right)$ gates where k is a small constant:

Solution:

where $\mathrm{C} 1^{-1}$ and $\mathrm{C} 2^{-1}$ are the reverse circuits to C 1 and C 2 . The above circuit uses less than $2\left(C_{1}+C_{2}+n\right)$ gates.

Problem 6. Find what CNOT looks like in the basis $\{|++\rangle,|+-\rangle,|-+\rangle,|--\rangle\}$. (write down the corresponding matrix representation.)

Solution:

See Exercise 4.20, and equations (4.24)-(4.27). The corresponding matrix looks like this:

$$
U_{C N O T}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Problem 7. Exercise 4.26 from the Nielsen and Chuang book. Note that the first two rotations, from left, are $R_{y}(\pi / 4)$ and the last two are $R_{y}(-\pi / 4)$ where $R_{y}(\theta)=\exp \left(-i \sigma_{Y} \theta / 2\right)$.

Solution:

The circuit in Exercise 4.26 can be redrawn as follows:

where the block B is as follows:

If $c_{1}=0$, then $B B^{-1}=I$, and the whole circuit is the identity operator. Let's assume $c_{1}=1$. Then,
if $c_{2}=0$, then

$$
B=I \otimes\left(R_{y}(\pi / 4)\right)^{2}=I \otimes R_{y}(\pi / 2)=I \otimes\left(I-i \sigma_{Y}\right) / \sqrt{2}
$$

if $c_{2}=1$, then

$$
B=I \otimes R_{y}(\pi / 4) \sigma_{X} R_{y}(\pi / 4)
$$

where using $\alpha \triangleq \cos (\pi / 8)$ and $\beta \triangleq \sin (\pi / 8)$, and $\sigma_{Y} \sigma_{X} \sigma_{Y}=i \sigma_{Y} \sigma_{Z}=-\sigma_{X}$

$$
\begin{aligned}
R_{y}(\pi / 4) \sigma_{X} R_{y}(\pi / 4) & =\left(\alpha I-i \beta \sigma_{Y}\right) \sigma_{X}\left(\alpha I-i \beta \sigma_{Y}\right) \\
& =\alpha^{2} \sigma_{X}-i \alpha \beta\left\{\sigma_{Y}, \sigma_{X}\right\}-\beta^{2} \sigma_{Y} \sigma_{X} \sigma_{Y} \\
& =\left(\alpha^{2}+\beta^{2}\right) \sigma_{X}=\sigma_{X},
\end{aligned}
$$

we have

$$
B=I \otimes \sigma_{X}, c_{2}=1
$$

Using the above relations, one can obtain

$$
\begin{aligned}
B|0\rangle|0\rangle & =|0\rangle|+\rangle \\
B|0\rangle|1\rangle & =|0\rangle|-\rangle \\
B|1\rangle|0\rangle & =|1\rangle|1\rangle \\
B|1\rangle|1\rangle & =|1\rangle|0\rangle
\end{aligned}
$$

The CNOT gate between the first control bit and the test bit, changes $|1\rangle$ to $|0\rangle$ and vice verca, and therefore, it is easy to verify that the first circuit behaves like a Toffoli gate except for the input $|1\rangle_{c_{1}}|0\rangle_{c_{2}}|1\rangle_{t}$ for which there exist an extra factor -1 .

Problem 8. Using a bit-query black box, which acts as follows

$$
|X\rangle \otimes|b\rangle \longrightarrow|X\rangle \otimes|b \oplus f(X)\rangle
$$

make a phase-query black box with the following operation:

$$
|X\rangle \longrightarrow(-1)^{f(X)}|X\rangle
$$

where $X=b_{1} b_{2} \ldots b_{n}$ in the binary representation and $|X\rangle=\left|b_{1}\right\rangle\left|b_{2}\right\rangle \cdots\left|b_{n}\right\rangle$.

Solution:

See Section 6.1.1, equations (6.1)-(6.3).

