MASSACHUSETTS InSTITUTE OF TECHNOLOGY

2.111J/18.435J/ESD. 79

Quantum Computation
Fall 2004
Problem Set 9
Due: Tuesday, November 23 (in class)

Problem 1. For the position operator x and the momentum operator p (corresponding to $-i \hbar \frac{\partial}{\partial x}$), show that $[x, p]=i \hbar$.

Problem 2. Verify the following equalities:
(a) $\left[a, a^{\dagger}\right]=1$
(b) $\left[a, a^{\dagger} a\right]=a$
(c) $\left[a^{\dagger}, a^{\dagger} a\right]=-a^{\dagger}$
(d) $H=\hbar \omega\left(a^{\dagger} a+1 / 2\right)$ where

$$
a=\frac{1}{\sqrt{2 \hbar \omega}}(\omega x+i p)
$$

and

$$
H=\frac{1}{2}\left(p^{2}+\omega^{2} x^{2}\right)
$$

Problem 3. For $\hbar=\omega=1$, verify $a|0\rangle=0$, where

$$
|0\rangle=\int e^{-x^{2} / 2}|x\rangle d x
$$

Problem 4. Verify

$$
a|n\rangle=\sqrt{n}|n-1\rangle
$$

and

$$
a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle
$$

where

$$
|n\rangle=\frac{\left(a^{\dagger}\right)^{n}}{\sqrt{n!}}|0\rangle
$$

Also, show that $|n\rangle$ is an eigenstate of H with energy (eigenvalue) $\hbar \omega(n+1 / 2)$.
Problem 5. Show that $[C, D]=[C, H]=[D, H]=0$, where

$$
\begin{gathered}
C=\omega\left(a^{\dagger} a+\sigma_{Z} / 2\right) \\
D=\kappa\left(a^{\dagger} \sigma_{-}+a \sigma_{+}\right)-(\Delta \omega / 2) \sigma_{Z}
\end{gathered}
$$

and

$$
H=\hbar(C+D+\omega / 2) .
$$

(Remember that $\sigma_{ \pm}=\left(\sigma_{X} \pm i \sigma_{Y}\right) / 2$, or equivalently $\sigma_{+}=|0\rangle\langle 1|$ and $\sigma_{-}=|1\rangle\langle 0|$.)

Problem 6. Find the cluster state for a square. In other words, find the state $|\psi\rangle$ such that

$$
\sigma_{X}^{A} \sigma_{Z}^{B} \sigma_{Z}^{D}|\psi\rangle=\sigma_{X}^{B} \sigma_{Z}^{C} \sigma_{Z}^{A}|\psi\rangle=\sigma_{X}^{C} \sigma_{Z}^{D} \sigma_{Z}^{B}|\psi\rangle=\sigma_{X}^{D} \sigma_{Z}^{A} \sigma_{Z}^{C}|\psi\rangle=|\psi\rangle
$$

where the super indices $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D are associated with the vertices of the square.

