Massachusetts Institute of Technology

2.111J/18.435J/ESD. 79

Quantum Computation
Fall 2004

Problem Set 3

Solution

Problem 1. For a composite system A and B, define

$$
\mathrm{I}_{A B}^{2}=\left(\mathrm{I}_{X}^{A B}\right)^{2}+\left(\mathrm{I}_{Y}^{A B}\right)^{2}+\left(\mathrm{I}_{Z}^{A B}\right)^{2}
$$

where

$$
\mathrm{I}_{j}^{A B}=\frac{1}{2} \sigma_{j}^{A} \otimes I_{B}+\frac{1}{2} I_{A} \otimes \sigma_{j}^{B} \text { for } j \in\{X, Y, Z\} .
$$

Evaluate

$$
\left\langle\mathrm{I}_{A B}^{2}\right\rangle={ }_{A B}\langle\psi| \mathrm{I}_{A B}^{2}|\psi\rangle_{A B}
$$

for the following states:
i) $|\psi\rangle_{A B}=\left(|01\rangle_{A B}-|10\rangle_{A B}\right) / \sqrt{2}$
ii) $|\psi\rangle_{A B}=\left(|01\rangle_{A B}+|10\rangle_{A B}\right) / \sqrt{2}$
iii) $|\psi\rangle_{A B}=\left(|00\rangle_{A B}+|11\rangle_{A B}\right) / \sqrt{2}$
iv) $|\psi\rangle_{A B}=\left(|00\rangle_{A B}-|11\rangle_{A B}\right) / \sqrt{2}$.

Solution:

From the lecture, you should remember that

$$
\left(\mathrm{I}_{j}^{A B}\right)^{2}=\frac{1}{2} I_{A} \otimes I_{B}+\frac{1}{2} \sigma_{j}^{A} \otimes \sigma_{j}^{B} \text { for } j \in\{X, Y, Z\} .
$$

Furthermore,

$$
\sigma_{X}|0\rangle=|1\rangle, \sigma_{X}|1\rangle=|0\rangle, \sigma_{Y}|0\rangle=i|1\rangle, \sigma_{Y}|1\rangle=-i|0\rangle, \sigma_{Z}|0\rangle=|0\rangle, \sigma_{Z}|1\rangle=-|1\rangle
$$

Now, it is easy to verify that
i)

$$
\left(\sigma_{j}^{A} \otimes \sigma_{j}^{B}\right)|\psi\rangle_{A B}=-|\psi\rangle_{A B} \text { for } j \in\{X, Y, Z\}
$$

$$
\Rightarrow \quad{ }_{A B}\langle\psi| \sigma_{j}^{A} \otimes \sigma_{j}^{B}|\psi\rangle_{A B}=-1 \text { and }{ }_{A B}\langle\psi| I_{A} \otimes I_{B}|\psi\rangle_{A B}=1
$$

$$
\Rightarrow \quad{ }_{A B}\langle\psi|\left(\mathrm{I}_{j}^{A B}\right)^{2}|\psi\rangle_{A B}=0 \text { for } j \in\{X, Y, Z\}
$$

$$
\Rightarrow \quad{ }_{A B}\langle\psi| \mathrm{I}_{A B}^{2}|\psi\rangle_{A B}=0
$$

ii) $\left(\sigma_{X}^{A} \otimes \sigma_{X}^{B}\right)|\psi\rangle_{A B}=\left(\sigma_{Y}^{A} \otimes \sigma_{Y}^{B}\right)|\psi\rangle_{A B}=-\left(\sigma_{Z}^{A} \otimes \sigma_{Z}^{B}\right)|\psi\rangle_{A B}=|\psi\rangle_{A B}$
$\Rightarrow{ }_{A B}\langle\psi| \mathrm{I}_{A B}^{2}|\psi\rangle_{A B}=2$.
iii) $\left(\sigma_{X}^{A} \otimes \sigma_{X}^{B}\right)|\psi\rangle_{A B}=-\left(\sigma_{Y}^{A} \otimes \sigma_{Y}^{B}\right)|\psi\rangle_{A B}=\left(\sigma_{Z}^{A} \otimes \sigma_{Z}^{B}\right)|\psi\rangle_{A B}=|\psi\rangle_{A B}$
$\Rightarrow{ }_{A B}\langle\psi| \mathrm{I}_{A B}^{2}|\psi\rangle_{A B}=2$.
iv) $-\left(\sigma_{X}^{A} \otimes \sigma_{X}^{B}\right)|\psi\rangle_{A B}=\left(\sigma_{Y}^{A} \otimes \sigma_{Y}^{B}\right)|\psi\rangle_{A B}=\left(\sigma_{Z}^{A} \otimes \sigma_{Z}^{B}\right)|\psi\rangle_{A B}=|\psi\rangle_{A B}$
$\Rightarrow{ }_{A B}\langle\psi| \mathrm{I}_{A B}^{2}|\psi\rangle_{A B}=2$.

Problem 2. Recall

$$
\begin{aligned}
{\left[\sigma_{X}, \sigma_{Y}\right] } & \equiv \sigma_{X} \sigma_{Y}-\sigma_{Y} \sigma_{X} \\
& =2 i \sigma_{Z}
\end{aligned}
$$

Find the following commutation relations: $\left[\sigma_{X}^{A} \otimes \sigma_{X}^{B}, \sigma_{Y}^{A} \otimes \sigma_{Y}^{B}\right],\left[\sigma_{Y}^{A} \otimes \sigma_{Y}^{B}, \sigma_{Z}^{A} \otimes \sigma_{Z}^{B}\right]$, and $\left[\sigma_{Z}^{A} \otimes \sigma_{Z}^{B}, \sigma_{X}^{A} \otimes \sigma_{X}^{B}\right]$.

Solution:

$$
\begin{aligned}
{\left[\sigma_{X}^{A} \otimes \sigma_{X}^{B}, \sigma_{Y}^{A} \otimes \sigma_{Y}^{B}\right] } & =\left(\sigma_{X}^{A} \otimes \sigma_{X}^{B}\right)\left(\sigma_{Y}^{A} \otimes \sigma_{Y}^{B}\right)-\left(\sigma_{Y}^{A} \otimes \sigma_{Y}^{B}\right)\left(\sigma_{X}^{A} \otimes \sigma_{X}^{B}\right) \\
& =\sigma_{X}^{A} \sigma_{Y}^{A} \otimes \sigma_{X}^{B} \sigma_{Y}^{B}-\sigma_{Y}^{A} \sigma_{X}^{A} \otimes \sigma_{Y}^{B} \sigma_{X}^{B} \\
& =i \sigma_{Z}^{A} \otimes i \sigma_{Z}^{B}-(-i) \sigma_{Z}^{A} \otimes(-i) \sigma_{Z}^{B} \\
& =0
\end{aligned}
$$

Other commutation relations are also zero using a similar treatment.
Problem 3. For the state $|\psi\rangle_{A B}=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|1\rangle_{B}-|1\rangle_{A} \otimes|0\rangle_{B}\right)$, find

$$
\rho_{A} \equiv t r_{B}\left(\rho_{A B}\right)
$$

where

$$
\rho_{A B}=|\psi\rangle_{A B}\langle\psi| .
$$

Solution:

$$
\begin{aligned}
\rho_{A} & \equiv \operatorname{tr}_{B}\left(\rho_{A B}\right) \\
& \equiv{ }_{B}\langle 0| \rho_{A B}|0\rangle_{B}+{ }_{B}\langle 1| \rho_{A B}|1\rangle_{B} \\
& ={ }_{B}\langle 0 \mid \psi\rangle_{A B}\langle\psi \mid 0\rangle_{B}+{ }_{B}\langle 1 \mid \psi\rangle_{A B}\langle\psi \mid 1\rangle_{B} \\
& =\frac{1}{2}\left(|1\rangle_{A A}\langle 1|+|0\rangle_{A A}\langle 0|\right)
\end{aligned}
$$

Problem 4. A C-NOT gate can be represented by the following unitary operator:

$$
U_{C N O T}=|0\rangle_{A}\langle 0| \otimes I_{B}+|1\rangle_{A}\langle 1| \otimes \sigma_{X}^{B}
$$

Verify that $U_{C N O T}=U_{C N O T}^{\dagger}$ and $U_{C N O T}^{2}=I$.

Solution:

Projectors, the identity operator, and the Pauli matrices are all Hermitian. Therefore, $U_{\text {CNOT }}=U_{\text {CNOT }}^{\dagger}$.

$$
\begin{aligned}
U_{C N O T}^{2}= & \left(|0\rangle_{A}\langle 0| \otimes I_{B}+|1\rangle_{A}\langle 1| \otimes \sigma_{X}^{B}\right)\left(|0\rangle_{A}\langle 0| \otimes I_{B}+|1\rangle_{A}\langle 1| \otimes \sigma_{X}^{B}\right) \\
= & |0\rangle_{A}\langle 0 \mid 0\rangle_{A}\langle 0| \otimes I_{B}^{2}+|0\rangle_{A}\langle 0 \mid 1\rangle_{A}\langle 1| \otimes I_{B} \sigma_{X}^{B} \\
& +|1\rangle_{A}\langle 1 \mid 0\rangle_{A}\langle 0| \otimes \sigma_{X}^{B} I_{B}+|1\rangle_{A}\langle 1 \mid 1\rangle_{A}\langle 1| \otimes \sigma_{X}^{B} \sigma_{X}^{B} \\
= & |0\rangle_{A}\langle 0| \otimes I_{B}+|1\rangle_{A}\langle 1| \otimes\left(\sigma_{X}^{B}\right)^{2} \\
= & \left(|0\rangle_{A}\langle 0|+|1\rangle_{A}\langle 1|\right) \otimes I_{B} \\
= & I_{A} \otimes I_{B} .
\end{aligned}
$$

Problem 5. Suppose your systems have 3-D vector spaces with $\{|0\rangle,|1\rangle,|2\rangle\}$ as the basis. For the operators

$$
\begin{gathered}
R=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right], \omega=e^{2 \pi i / 3}\left(R|j\rangle=e^{2 \pi i j / 3}|j\rangle\right) \\
T=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], T|j\rangle=|(j+1) \bmod 3\rangle
\end{gathered}
$$

a) Find the commutation relation among R and $T,[R, T]$.
b) Show how Alice and Bob can start with $|\psi\rangle=(|00\rangle+|11\rangle+|22\rangle) / \sqrt{3}$ and use operators $R^{a} T^{b}$, for a and b integers, to send two classical trits (9 different messages) using one qutrit of communication.

Solution:

a)
$R T=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^{2}\end{array}\right] \times\left[\begin{array}{ccc}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & 1 \\ \omega & 0 & 0 \\ 0 & \omega^{2} & 0\end{array}\right]$

$$
\begin{aligned}
& T R=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \times\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & \omega^{2} \\
1 & 0 & 0 \\
0 & \omega & 0
\end{array}\right]=\omega^{2} R T \\
& \Rightarrow R T=\omega T R \\
& \Rightarrow R^{a} T=\omega^{a} T R^{a} \\
& \Rightarrow R^{a} T^{b}=\omega^{a b} T^{b} R^{a}
\end{aligned}
$$

for a and b integers (the above proof is for positive integers, but it is easy to extend it to all integers). In particular,

$$
[R, T]=\left(1-\omega^{2}\right) R T
$$

Also note that

$$
\begin{aligned}
R^{\dagger}=R^{-1}, T^{\dagger} & =T^{-1} \\
R^{3}=I, T^{3} & =I
\end{aligned}
$$

b) This is a generalization of the superdense coding to the 3-D case. Alice chooses a pair $\{a, b\}, 0 \leq a, b \leq 2$, and then uses the operator $R^{a} T^{b}$ to encode her qutrit. Then, she sends her qutrit to Bob via a quantum channel. In order to make it possible for Bob to distinguish between all nine possible operations that Alice can perform, we have to show that the states $R^{a} T^{b}|\psi\rangle$ are pair-wise orthogonal for different pairs $\{a, b\}$. In fact, we have to calculate the inner product of $R^{a} T^{b}|\psi\rangle$ and $R^{c} T^{d}|\psi\rangle$ for different pairs $\{a, b\}$ and $\{c, d\}$, which is as follows:

$$
\begin{aligned}
\langle\psi|\left(R^{c} T^{d}\right)^{\dagger} R^{a} T^{b}|\psi\rangle & =\langle\psi| T^{-d} R^{a-c} T^{b}|\psi\rangle \\
& =\omega^{b(a-c)}\langle\psi| T^{b-d} R^{a-c}|\psi\rangle \\
& =\frac{\omega^{b(a-c)}}{\sqrt{3}}\langle\psi| T^{b-d}\left(|00\rangle+\omega^{a-c}|11\rangle+\omega^{2(a-c)}|22\rangle\right) \\
& =\frac{\omega^{b(a-c)}}{\sqrt{3}}\langle\psi|\left(|b-d\rangle_{A}|0\rangle_{B}+\omega^{a-c}|b-d+1\rangle_{A}|1\rangle_{B}+\omega^{2(a-c)}|b-d+2\rangle_{A}|2\rangle_{B}\right) \\
& \equiv A
\end{aligned}
$$

For $b=d$ and $a=c$, we have $A=1$, which proves that the vectors are normal.
For $b=d$ and $a \neq c$, we have $A=1+\omega^{a-c}+\omega^{2(a-c)}=1+e^{2 \pi i / 3}+e^{4 \pi i / 3}=0$. Similarly, it is easy to verify that for the case of $b \neq d$, all vectors on the right hand side are orthogonal to the ones on the left; therefore, $A=0$. This proves that the vectors $R^{a} T^{b}|\psi\rangle$ are orthonormal. So, there is a unitary transform by which Bob can transform these set of vectors to the computational basis, and then he can easily distinguish between different states by doing a measurement in the computational basis.

