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Problem 1.  For a composite system A and B, define 

AB 2 + ΙY 
ABAB 2 + ΙZ 

2 = (  )  (  )  (  )2ΙXΙAB 
where 

AB = 1 A 1 IA 
BΙ j σj ⊗ IB + ⊗ σj for j ∈ { , , }  .X  Y  Z  

2 2 
Evaluate 

2 = ψ Ι2 ψΙAB AB AB AB 

for the following states: 

i) 01 − 10AB AB )ψ AB = ( / 2 
ii) ψ 01 + 10AB AB )AB = ( / 2 
iii) ψ 00 11 AB )AB +AB = ( / 2 

= (iv) 00 − 11 .AB AB )ψ AB / 2 

Solution: 

From the lecture, you should remember that  

1Ιj IA 
1 A BAB 2 X  Y  Z  (  )  = ⊗ IB + σj ⊗ σj for j ∈ { , , }  .

2 2

Furthermore,  

0 = 1 , 1 = 0 , σY 0 = i 1 , σY 1 = −i 0 , , σZ 1 = − 10 = 0σX σX σZ 

Now, it is easy to verify that 

A Bi) (σj ⊗ σj ) ψ = − ψ X  Y  Z  for j ∈ { , , }  AB AB 

A B⇒ ψ σj ⊗ σj ψ = −1 and ψ ⊗ IB ψ = 1IA AB 

AB )2 
AB AB AB 

⇒ ψ ψ X  Y  Z  = 0 for j ∈ { , , }  ( Ι jAB AB 
2⇒ ψ ψ = 0ΙAB AB


B

AB 
B Bii) (σA ⊗ σX ) ψ = (σA ⊗ σY ) ψ = −(σA ⊗ σZ ) ψ = ψAB Y AB Z AB ABX 



2⇒ ψ ψ = 2 .ΙAB ABAB 

B B Biii) (σA ⊗ σX ) ψ = −(σA ⊗ σY ) ψ = (σA ⊗ σZ ) ψ = ψAB Y AB Z AB ABX 
2⇒ ψ ψ = 2 .ΙAB ABAB 

B B Biv) −(σA ⊗ σX ) ψ = (σA ⊗ σY ) ψ = (σA ⊗ σZ ) ψ = ψAB Y AB Z AB ABX 
2⇒ ψ ψ = 2 .ΙAB ABAB 

Problem 2.  Recall 

[σ σX , Y ] ≡ σ σ  − σ σ  X  Y  Y  X  

= 2iσZ . 

Find the following commutation relations: 

B A A B A B B A B 
Y ,[σA ⊗ σ  σ  ⊗ σB ], [σ ⊗ σ  σ  Z ⊗ σZ ], and [σA ⊗ σ  σ  ⊗ σX ].X X , Y Y Y Z Z , X 

Solution: 

B , A B B B − B B[σA ⊗ σ  σ  Y ⊗ σY ] = (σ
A ⊗ σX )(σ

A ⊗ σY ) ( σA ⊗ σY )(σ
A ⊗ σX )X X X Y Y X


B  B 
A A  ⊗ σ σ  A  A  ⊗ σ σ  = σ σ  B  B  − σ σ  X Y  X  Y Y  X Y  X  
A B= iσZ ⊗ iσZ − −  i ( )σB( )σA ⊗ −  iZ Z 

= 0 . 

Other commutation relations are also zero using a similar treatment. 

1 = (Problem 3.  For the state ψ ⊗ − ⊗ ) , find0 1 1 0A BB AAB 2 
≡ tr (  )  ρA B ρAB  

where 
= ψ ψ .ABρAB

Solution: 

≡ tr (  )  ρA B ρAB  

≡ 0 0 + 1 1ρAB ρAB B B BB 

B BAB B B0 0 1 1ψ ψ ψ ψ= + AB 

1= ( )1 1 + 0  0  AAAA2 

2 



2 

Problem 4.  A C-NOT gate can be represented by the following unitary operator: 

B= + ⊗ σX .I0  0  A 1 1  AUCNOT ⊗ B 
2Verify that U =U † and UCNOT = I .CNOT CNOT 

Solution: 

Projectors, the identity operator, and the Pauli matrices are all Hermitian. Therefore, 
= U †UCNOT CNOT . 

B B⊗ IB + ⊗ σX )( ⊗ IB + ⊗ σX )0  0  A 0  0  A1 1  A 1 1  AUCNOT  = ( 
2 B= ⊗ IB + ⊗ IBσ0  0A 0  0  A 0  0A 1 1  A X 
BI B B+ ⊗ σX B  + ⊗ σ σ  1 1A 0 0  A 1 1A 1 1  A X  X  

B )2 = ⊗ IB + ⊗ (σ0 0  A 1 1  A X 

= ( + ) ⊗ I0 0  A 1 1  A B


= IA ⊗ IB . 


Problem 5.  Suppose your systems have 3-D vector spaces with { 0 , 1 , 2 }  as the 
basis. For the operators 

 
 1 0 0   

e2 / = e2  / 3R = 

 0 ω 0 

 
, ω = πi 3 ( R j  πij j )

 

 0 0 
 ω2 


 0 0 1  

 T =  1 0 0   , T j  = j +( 1)mod3 
 
 0 1 0   

a) Find the commutation relation among R and T, [ ,R T ]. 

b) Show how Alice and Bob can start with 
ψ = ( 00 + 11 + 22 )/ 3  and use 

a boperators R T  , for a and b integers, to send two classical trits (9 different 
messages) using one qutrit of communication. 

Solution: 

a) 
   
 1 0 0    0 0 1    0 0 1   

RT = 

 0 ω 0 

 
× 

 1 0 0  

 = 

 ω 0 0  




     

 0 0 ω2  

 0 1 0   
 0 ω2 0 



  

3 



 0 0 1   
 1 0  0    0 0 ω2  

 


 × 


 TR =  1 0 0  0  ω 0 


 
= 

 1 0  0   = ω2RT
  
 0 1 0  


 




 0 0 ω2   0 ω 0      

⇒ RT = ωTR 
a a a⇒ R T = ω TR  

⇒ R T  ab  b  a  a b  = ω T R  

for a and b integers (the above proof is for positive integers, but it is easy to extend it to 
all integers). In particular, 

R T ] = (1− ω2)RT  .[ ,
Also note that 

= R−1  †  =T−1R† ,T 
R3 = I T  3 = I ., 

b)   This is a generalization of the superdense coding to the 3-D case. Alice chooses a 
≤ a b  a bpair {a,b}, 0  ,  ≤ 2 , and then uses the operator R T  to encode her qutrit. Then, she 

sends her qutrit to Bob via a quantum channel. In order to make it possible for Bob to 
distinguish between all nine possible operations that Alice can perform, we have to show 

a bthat the states R T  ψ  are pair-wise orthogonal for different pairs {a,b}. In fact, we 
a b c dhave to calculate the inner product of R T  ψ  and R T  ψ  for different pairs {a,b} 

and {c,d}, which is as follows: 

c  a  b  −d  a  c  b  −ψ (R Td )†R T  ψ = ψ T  R  T  ψ 
b a  c  ψ= ω (  )  − Tb  d  a  c  −− R ψ 

ωb a  c  (  )  − 

Tb  d  (− a c  a c2( ) = ψ 00 + ω − 11 + ω − 22 )3 
ωb a  c  (  )  − 

a c  a  c  2( ) = ψ b d− 0 + ω − b d + 1− 1 + ω − b d + 2− 2( B )B BA A A3 
≡ A 

For b = d and a = c , we have A = 1 , which proves that the vectors are normal. 
a ca c  2( ) 1 πi πi1For b = d and a ≠ c , we have A = + ω − + ω − = +  e2 /3 + e4 /3 = 0 . 

Similarly, it is easy to verify that for the case of b ≠ d , all vectors on the right hand side 
are orthogonal to the ones on the left; therefore, A = 0 . This proves that the vectors 
a bR T  ψ  are orthonormal. So, there is a unitary transform by which Bob can transform 

these set of vectors to the computational basis, and then he can easily distinguish between 
different states by doing a measurement in the computational basis. 
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