MASSACHUSETTS INSTITUTE OF TECHNOLOGY

2.111J/18.435J/ESD.79 Quantum Computation Fall 2004

MIDTERM EXAM

Thursday, October 28

Problem 1. In NMR quantum computing, a Hadamard gate is implemented by rotating around the axis $(\vec{x} + \vec{z})/\sqrt{2}$. Compute the matrix obtained by rotation around this axis by π radians, and compare to a Hadamard gate.

Problem 2. Let

$$H = \frac{1}{2}(\sigma_X \otimes \sigma_X + \sigma_Y \otimes \sigma_Y + \sigma_Z \otimes \sigma_Z + I \otimes I)$$

be an operator on two qubits.

- a) Find H^2 and write it in a simple form.
- b) Using (a), find $\exp(-i\pi H/4)$ and $\exp(-i\pi H/2)$.
- c) Find the eigenvalues of H.
- d) Find a set of orthonormal eigenstates of H.

Problem 3. Let N be an integer larger than 5. Consider the following state:

$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x \operatorname{mod} N\rangle_A \otimes |3x \operatorname{mod} N\rangle_B \otimes |5x \operatorname{mod} N\rangle_C.$$

Find the output state if we take a quantum Fourier transform modulus N on each of the registers A, B, and C. That is, if we denote the corresponding QFT operators to each system by U_A , U_B , and U_C , find $U_A \otimes U_B \otimes U_C |\psi\rangle$. Write your answer in the basis $\{|i\rangle_A|j\rangle_B|k\rangle_C|0 \leq i,j,k < N\}$, and show that it is the superposition of equally probable states. What is this probability?