Massachusetts Institute of Technology

2.111J/18.435J/ESD. 79

Quantum Computation
Fall 2004
Problem Set 3
Due: Tuesday, October 5 (in class)

Problem 1. For a composite system A and B, define

$$
\mathrm{I}_{A B}^{2}=\left(\mathrm{I}_{X}^{A B}\right)^{2}+\left(\mathrm{I}_{Y}^{A B}\right)^{2}+\left(\mathrm{I}_{Z}^{A B}\right)^{2}
$$

where

$$
\mathrm{I}_{j}^{A B}=\frac{1}{2} \sigma_{j}^{A} \otimes I_{B}+\frac{1}{2} I_{A} \otimes \sigma_{j}^{B} \text { for } j \in\{X, Y, Z\} .
$$

Evaluate

$$
\left\langle\mathrm{I}_{A B}^{2}\right\rangle={ }_{A B}\langle\psi| \mathrm{I}_{A B}^{2}|\psi\rangle_{A B}
$$

for the following states:
i) $|\psi\rangle_{A B}=\left(|01\rangle_{A B}-|10\rangle_{A B}\right) / \sqrt{2}$
ii) $|\psi\rangle_{A B}=\left(|01\rangle_{A B}+|10\rangle_{A B}\right) / \sqrt{2}$
iii) $|\psi\rangle_{A B}=\left(|00\rangle_{A B}+|11\rangle_{A B}\right) / \sqrt{2}$
iv) $|\psi\rangle_{A B}=\left(|00\rangle_{A B}-|11\rangle_{A B}\right) / \sqrt{2}$.

Problem 2. Recall

$$
\begin{aligned}
{\left[\sigma_{X}, \sigma_{Y}\right] } & \equiv \sigma_{X} \sigma_{Y}-\sigma_{Y} \sigma_{X} \\
& =2 i \sigma_{Z}
\end{aligned}
$$

Find the following commutation relations: $\left[\sigma_{X}^{A} \otimes \sigma_{X}^{B}, \sigma_{Y}^{A} \otimes \sigma_{Y}^{B}\right],\left[\sigma_{Y}^{A} \otimes \sigma_{Y}^{B}, \sigma_{Z}^{A} \otimes \sigma_{Z}^{B}\right]$, and $\left[\sigma_{Z}^{A} \otimes \sigma_{Z}^{B}, \sigma_{X}^{A} \otimes \sigma_{X}^{B}\right]$.

Problem 3. For the state $|\psi\rangle_{A B}=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|1\rangle_{B}-|1\rangle_{A} \otimes|0\rangle_{B}\right)$, derive

$$
\rho_{A}=t r_{B}\left(\rho_{A B}\right)
$$

where

$$
\rho_{A B}=|\psi\rangle_{A B}\langle\psi| .
$$

Problem 4. A C-NOT gate can be represented by the following unitary operator:

$$
U_{C N O T}=|0\rangle_{A}\langle 0| \otimes I_{B}+|1\rangle_{A}\langle 1| \otimes \sigma_{X}^{B}
$$

Verify that $U_{C N O T}=U_{C N O T}^{\dagger}$ and $U_{C N O T}^{2}=I$.
Problem 5. Suppose your systems have 3-D vector spaces with $\{|0\rangle,|1\rangle,|2\rangle\}$ as the basis. For the operators

$$
\begin{gathered}
R=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right], \omega=e^{2 \pi i / 3} \quad\left(R|j\rangle=e^{2 \pi i j / 3}|j\rangle\right) \\
T=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], T|j\rangle=|(j+1) \bmod 3\rangle
\end{gathered}
$$

a) Find the commutation relation among R and $T,[R, T]$.
b) Show how Alice and Bob can start with $(|00\rangle+|11\rangle+|22\rangle) / \sqrt{3}$ and use operators $R^{a} T^{b}$, for a and b integers, to send two classical trits (9 different messages) using one qutrit of communication.

