MASSAChUSETTS Institute of Technology

2.111J/18.435J/ESD. 79

Quantum Computation
Fall 2004

Problem Set 4

Due: Tuesday, October 12 (in class)

Problem 1. Verify that $|\nearrow\rangle=\cos \frac{\theta}{2}|0\rangle+\sin \frac{\theta}{2}|1\rangle$ and $|\swarrow\rangle=-\sin \frac{\theta}{2}|0\rangle+\cos \frac{\theta}{2}|1\rangle$ are the corresponding eigenvectors to, respectively, the eigenvalues +1 and -1 of the operator $\sigma=\cos \theta \sigma_{Z}+\sin \theta \sigma_{X}$.

Problem 2. Show that

$$
\left(|00\rangle_{A B}+|11\rangle_{A B}\right) / \sqrt{2}=\left(|\nearrow\rangle_{A}|\nearrow\rangle_{B}+|\swarrow\rangle_{A}|\swarrow\rangle_{B}\right) / \sqrt{2}
$$

where $|\nearrow\rangle$ and $|\swarrow\rangle$ are defined in Problem 1.
Problem 3. For the state $|\psi\rangle_{A B}=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right)$, verify that
a) $\operatorname{Pr}(\uparrow \nearrow) \equiv \operatorname{tr}\left(|\psi\rangle_{A B}\langle\psi||\uparrow\rangle_{A}\langle\uparrow| \otimes|\nearrow\rangle_{B}\langle\nearrow|\right)$

$$
=\frac{1}{2}\left(\cos \frac{\theta}{2}\right)^{2}=\frac{3}{8}
$$

where $\theta=\pi / 3$ and $|\nearrow\rangle$ is the +1 -eigenstate of the operator σ in Problem 1. $|\uparrow\rangle=|0\rangle$ is the +1 -eigenstate of σ_{Z}. Similarly verify that
b) $\operatorname{Pr}(\uparrow \swarrow)=\frac{1}{2}\left(\sin \frac{\theta}{2}\right)^{2}=\frac{1}{8}$
c) $\operatorname{Pr}(\downarrow \nearrow)=1 / 8$
d) $\operatorname{Pr}(\downarrow \swarrow)=3 / 8$
where $\theta=\pi / 3$ and $|\swarrow\rangle$ is the (-1)-eigenstate of the operator σ in Problem 1. $|\downarrow\rangle=|1\rangle$ is the (-1)-eigenstate of σ_{Z}.

Problem 4. For the GHZ state

$$
|\psi\rangle=\left(|0\rangle_{A}|0\rangle_{B}|0\rangle_{C}+|1\rangle_{A}|1\rangle_{B}|1\rangle_{C}\right) / \sqrt{2}
$$

evaluate the following expectation values:

$$
\begin{aligned}
\left\langle\sigma_{X}^{A} \otimes \sigma_{Y}^{B} \otimes \sigma_{Y}^{C}\right\rangle & =? \\
\left\langle\sigma_{Y}^{A} \otimes \sigma_{X}^{B} \otimes \sigma_{Y}^{C}\right\rangle & =? \\
\left\langle\sigma_{Y}^{A} \otimes \sigma_{Y}^{B} \otimes \sigma_{X}^{C}\right\rangle & =? \\
\left\langle\sigma_{X}^{A} \otimes \sigma_{X}^{B} \otimes \sigma_{X}^{C}\right\rangle & =?
\end{aligned}
$$

$\sigma_{X}^{A} \otimes \sigma_{Y}^{B} \otimes \sigma_{Y}^{C}$ is the operator that corresponds to taking a measurement of σ_{X}^{A} on A, σ_{Y}^{B} on $\mathrm{B}, \sigma_{Y}^{C}$ on C , and multiplying the results, e.g. getting +1 for $\mathrm{A},-1$ for B , and -1 for C, the result is $(+1)(-1)(-1)=+1$! Do you notice anything paradoxical in the above results?

Problem 5. Suppose f is a one-to-one function, which can be constructed using the following circuit:

This circuit has C_{1} gates and accepts n bits at the input (including data bits x and work bits 0). $g(x)$ is the data loaded on the work space after the operation of the circuit. f^{-1} can also be constructed using the following circuit with C_{2} gates:

Show that there exists a reversible circuit with the following operation that uses only $k\left(C_{1}+C_{2}+n\right)$ gates where k is a small constant:

Problem 6. Find what CNOT looks like in the basis $\{|++\rangle,|+-\rangle,|-+\rangle,|--\rangle\}$. (write down the corresponding matrix representation.)

Problem 7. Exercise 4.26 from the Nielsen and Chuang book. Note that the first two rotations, from left, are $R_{y}(\pi / 4)$ and the last two are $R_{y}(-\pi / 4)$ where $R_{y}(\theta)=\exp \left(-i \sigma_{Y} \theta / 2\right)$.

Problem 8. Using a bit-query black box, which acts as follows

$$
|X\rangle \otimes|b\rangle \longrightarrow|X\rangle \otimes|b \oplus f(X)\rangle
$$

make a phase-query black box with the following operation:

$$
|X\rangle \longrightarrow(-1)^{f(X)}|X\rangle
$$

where $X=b_{1} b_{2} \ldots b_{n}$ in the binary representation and $|X\rangle=\left|b_{1}\right\rangle\left|b_{2}\right\rangle \cdots\left|b_{n}\right\rangle$.

