18.440 PROBLEM SET ONE, DUE FEBRUARY 14

A. FROM ROSS 8th EDITION CHAPTER ONE:

1. Problem 10: In how many ways can 8 people be seated in a row if
(a) there are no restrictions on the seating arrangement?
(b) persons A and B must sit next to each other?
(c) there are 4 women and 4 men and no 2 men or 2 women can sit next to each other?
(d) there are 5 men and they must sit next to each other?
(e) there are 4 married couples and each couple must sit together?
2. Problem 26: Expand $\left(x_{1}+2 x_{2}+3 x_{3}\right)^{4}$.
3. Problem 32: An elevator starts at the basement with 8 people (not including the elevator operator) and discharges them all by the time it reaches the top floor, number 6 . In how many ways could the operator have perceived the people leaving the elevator if all people look alike to him? What if the 8 people consisted of 5 men and 3 women and the operator could tell a man from a woman?
4. Theoretical Exercise 8: Prove that $\binom{n+m}{r}=\binom{n}{0}\binom{m}{r}+\binom{n}{1}\binom{m}{r-1}+\ldots+\binom{n}{r}\binom{m}{0}$. Hint: Consider a group of n men and m women. How many groups of size r are possible?
5. Theoretical Exercise 11: The following identity is known as Fermat's combinatorial identity:

$$
\binom{n}{k}=\sum_{i=k}^{n}\binom{i-1}{k-1} \quad n \geq k .
$$

Give a combinatorial argument (no computations are needed) to establish this identity. Hint: Consider the set of numbers 1 through n. How many subsets of size k have i as their highest-numbered member?
6. Self-Test Problem/Exercise 17: Give an analytic verification of

$$
\binom{n}{2}=\binom{k}{2}+k(n-k)+\binom{n-k}{2}, \quad 1 \leq k \leq n
$$

Now give a combinatorial argument for this identity.
B. Suppose you have 12 (distinguishable) hats and 4 (distinguishable) people. How many ways are there to divide the 12 hats among the 4 people with each person getting exactly three hats?
C. Consider permutations $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$.

1. How many such σ have only one cycle, i.e., have the property that $\sigma(1), \sigma \circ \sigma(1), \sigma \circ \sigma \circ \sigma(1), \ldots$ cycles through all elements of $\{1,2, \ldots, n\}$?
2. How many σ are fixed-point-free involutions, i.e., have the property that for each $j, \sigma(j) \neq j$ but $\sigma \circ \sigma(j)=j$?

MIT OpenCourseWare
http://ocw.mit.edu

18.440 Probability and Random Variables

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

