### 18.440 PROBLEM SET TWO, FEBRUARY 24

## A. FROM ROSS 8TH EDITION CHAPTER TWO:

1. Problem 25: A pair of dice is rolled until a sum of either 5 or 7 appears. Find the probability that a 5 occurs first. Hint. Let $E_{n}$ denote the event that a 5 occurs on the $n$th roll and no 5 or 7 occurs on the first $(n-1)$ rolls. Compute $P\left(E_{n}\right)$ and argue that $\sum_{i=1}^{\infty} P\left(E_{n}\right)$ is the desired probability.
2. Problem 48: Given 20 people, what is the probability that, among the 12 months in the year, there are 4 months containing exactly 2 birthdays and 4 containing exactly 3 birthdays?
3. Problem 49: A group of 6 men and 6 women is randomly divided into 2 groups of size 6 each. What is the probability that both groups will have the same number of men?
4. Theoretical Exercise 10: Prove that $P(E \cup F \cup G)=$ $P(E)+P(F)+P(G)-P\left(E^{c} F G\right)-P\left(E F^{c} G\right)-P\left(E F G^{c}\right)-2 P(E F G)$.
5. Theoretical Exercise 15: An urn contains $M$ white and $N$ black balls. If a random sample of size $r$ is chosen, what is the probability that it contains exactly $k$ white balls?
6. Theoretical Exercise 20: Consider an experiment whose sample space consists of a countably infinite number of points. Show that not all points can be equally likely. Can all points have a positive probability of occurring?
B. A deck of cards contains 30 cards with labels $1,2, \ldots, 30$. Suppose that somebody is randomly dealt a set of 7 cards of these cards (numbered with seven distinct numbers).
7. Find the probability that 3 of the cards contain odd numbers and 4 contain even numbers.
8. Find the probability each of the numbers on the seven cards ends with a different digit. (For example, the cards could be $3,5,14,16$, $22,29,30$.)
C. (Just for fun - not to hand in.) The following is a popular and rather instructive puzzle. A standard deck of 52 cards ( 26 red and 26 black) is
shuffled so that all orderings are equally likely. We then play the following game: I begin turning the cards over one at a time so that you can see them. At some point (before I have turned over all 52 cards) you say "I'm ready!" At this point I turn over the next card and if the card is red, you receive one dollar; otherwise you receive nothing. You would like to design a strategy to maximize the probability that you will receive the dollar. How should you decide when to say "I'm ready"?

MIT OpenCourseWare
http://ocw.mit.edu

### 18.440 Probability and Random Variables

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

