18.440: Lecture 25 Covariance and some conditional expectation exercises

Scott Sheffield

MIT

- If X and Y are independent then E[g(X)h(Y)] = E[g(X)]E[h(Y)].
- ► Just write $E[g(X)h(Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)f(x,y)dxdy$.
- ► Since $f(x, y) = f_X(x)f_Y(y)$ this factors as $\int_{-\infty}^{\infty} h(y)f_Y(y)dy \int_{-\infty}^{\infty} g(x)f_X(x)dx = E[h(Y)]E[g(X)].$

Defining covariance and correlation

- Now define covariance of X and Y by Cov(X, Y) = E[(X − E[X])(Y − E[Y]).
- Note: by definition Var(X) = Cov(X, X).
- Covariance (like variance) can also written a different way. Write μ_x = E[X] and μ_Y = E[Y]. If laws of X and Y are known, then μ_X and μ_Y are just constants.

Then

$$\operatorname{Cov}(X,Y) = E[(X-\mu_X)(Y-\mu_Y)] = E[XY-\mu_XY-\mu_YX+\mu_X\mu_Y] =$$

$$E[XY] - \mu_X E[Y] - \mu_Y E[X] + \mu_X \mu_Y = E[XY] - E[X]E[Y].$$

- Covariance formula E[XY] E[X]E[Y], or "expectation of product minus product of expectations" is frequently useful.
- ▶ Note: if X and Y are independent then Cov(X, Y) = 0.

Basic covariance facts

► Using Cov(X, Y) = E[XY] - E[X]E[Y] as a definition, certain facts are immediate.

$$\blacktriangleright \operatorname{Cov}(X,Y) = \operatorname{Cov}(Y,X)$$

- $\blacktriangleright \operatorname{Cov}(X,X) = \operatorname{Var}(X)$
- $\bullet \operatorname{Cov}(aX,Y) = a\operatorname{Cov}(X,Y).$
- $\blacktriangleright \operatorname{Cov}(X_1 + X_2, Y) = \operatorname{Cov}(X_1, Y) + \operatorname{Cov}(X_2, Y).$
- General statement of bilinearity of covariance:

$$\operatorname{Cov}(\sum_{i=1}^m a_i X_i, \sum_{j=1}^n b_j Y_j) = \sum_{i=1}^m \sum_{j=1}^n a_i b_j \operatorname{Cov}(X_i, Y_j).$$

Special case:

$$\operatorname{Var}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \operatorname{Var}(X_i) + 2 \sum_{(i,j):i < j} \operatorname{Cov}(X_i, X_j).$$

Defining correlation

- Again, by definition Cov(X, Y) = E[XY] E[X]E[Y].
- Correlation of X and Y defined by

$$\rho(X, Y) := \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}.$$

Correlation doesn't care what units you use for X and Y. If a > 0 and c > 0 then p(aX + b, cY + d) = p(X, Y).

• Satisfies
$$-1 \le \rho(X, Y) \le 1$$
.

- ▶ Why is that? Something to do with $E[(X + Y)^2] \ge 0$ and $E[(X Y)^2] \ge 0$?
- If a and b are positive constants and a > 0 then ρ(aX + b, X) = 1.
- If a and b are positive constants and a < 0 then $\rho(aX + b, X) = -1$.

- Say X and Y are uncorrelated when $\rho(X, Y) = 0$.
- Are independent random variables X and Y always uncorrelated?
- Yes, assuming variances are finite (so that correlation is defined).
- > Are uncorrelated random variables always independent?
- No. Uncorrelated just means E[(X − E[X])(Y − E[Y])] = 0, i.e., the outcomes where (X − E[X])(Y − E[Y]) is positive (the upper right and lower left quadrants, if axes are drawn centered at (E[X], E[Y])) balance out the outcomes where this quantity is negative (upper left and lower right quadrants). This is a much weaker statement than independence.

Examples

- Suppose that X₁,..., X_n are i.i.d. random variables with variance 1. For example, maybe each X_j takes values ±1 according to a fair coin toss.
- Compute $Cov(X_1 + X_2 + X_3, X_2 + X_3 + X_4)$.
- Compute the correlation coefficient $\rho(X_1 + X_2 + X_3, X_2 + X_3 + X_4).$
- Can we generalize this example?
- What is variance of number of people who get their own hat in the hat problem?
- ▶ Define X_i to be 1 if *i*th person gets own hat, zero otherwise.
- Recall formula $\operatorname{Var}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \operatorname{Var}(X_i) + 2 \sum_{(i,j):i < j} \operatorname{Cov}(X_i, X_j).$
- ► Reduces problem to computing Cov(X_i, X_j) (for i ≠ j) and Var(X_i).

18.440 Lecture 25

- Certain corrupt and amoral banker dies, instructed to spend some number n (of banker's choosing) days in hell.
- ► At the end of this period, a (biased) coin will be tossed. Banker will be assigned to hell forever with probability 1/n and heaven forever with probability 1 - 1/n.
- After 10 days, banker reasons, "If I wait another day I reduce my odds of being here forever from 1/10 to 1/11. That's a reduction of 1/110. A 1/110 chance at infinity has infinite value. Worth waiting one more day."
- Repeats this reasoning every day, stays in hell forever.
- Standard punch line: this is actually what banker deserved.
- Fairly dark as math humor goes (and no offense intended to anyone...) but dilemma is interesting.

- Paradox: decisions seem sound individually but together yield worst possible outcome. Why? Can we demystify this?
- Variant without probability: Instead of tossing (1/n)-coin, person deterministically spends 1/n fraction of future days (every nth day, say) in hell.
- ► Even simpler variant: infinitely many identical money sacks have labels 1, 2, 3, ... I have sack 1. You have all others.
- You offer me a deal. I give you sack 1, you give me sacks 2 and 3. I give you sack 2 and you give me sacks 4 and 5. On the *n*th stage, I give you sack *n* and you give me sacks 2*n* and 2*n* + 1. Continue until I say stop.
- Lets me get arbitrarily rich. But if I go on forever, I return every sack given to me. If *n*th sack confers right to spend *n*th day in heaven, leads to hell-forever paradox.
- I make infinitely many good trades and end up with less than I started with. "Paradox" is really just existence of 2-to-1 map from (smaller set) {2,3,...} to (bigger set) {1,2,...}.

- ➤ You have an infinite collection of money piles with labeled 0, 1, 2, ... from left to right.
- Precise details not important, but let's say you have 1/4 in the 0th pile and ³/₈5^j in the *j*th pile for each *j* > 0. Important thing is that pile size is increasing exponentially in *j*.
- Banker proposes to transfer a fraction (say 2/3) of each pile to the pile on its left and remainder to the pile on its right. Do this simultaneously for all piles.
- Every pile is bigger after transfer (and this can be true even if banker takes a portion of each pile as a fee).
- Banker seemed to make you richer (every pile got bigger) but really just reshuffled your infinite wealth.

Two envelope paradox

- ➤ X is geometric with parameter 1/2. One envelope has 10^X dollars, one has 10^{X-1} dollars. Envelopes shuffled.
- You choose an envelope and, after seeing contents, are allowed to choose whether to keep it or switch. (Maybe you have to pay a dollar to switch.)
- Maximizing conditional expectation, it seems it's always better to switch. But if you always switch, why not just choose second-choice envelope first and avoid switching fee?
- Kind of a disguised version of money pile paradox. But more subtle. One has to replace "*j*th pile of money" with "restriction of expectation sum to scenario that first chosen envelop has 10^j". Switching indeed makes each pile bigger.
- However, "Higher expectation given amount in first envelope" may not be right notion of "better." If S is payout with switching, T is payout without switching, then S has same law as T - 1. In that sense S is worse.

- Beware infinite expectations.
- Beware unbounded utility functions.
- They can lead to strange conclusions, sometimes related to "reshuffling infinite (actual or expected) wealth to create more" paradoxes.
- Paradoxes can arise even when total transaction is finite with probability one (as in envelope problem).

18.440 Probability and Random Variables Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.