### 18.440 PROBLEM SET FIVE, DUE MARCH 21

## A. FROM TEXTBOOK CHAPTER FOUR:

1. Problem 70: At time 0 a coin that comes up heads with probability $p$ is flipped and falls to the ground. Suppose it lands on heads. At times chosen according to a Poisson process with rate $\lambda$, the coin is picked up and flipped. (Between these times the coin remains on the ground.) What is the probability that the coin is on its head side at time $t$ ? Hint: What would be the conditional probability if there were no additional flips by time $t$, and what would it be if there were additional flips by time $t$ ?
2. Problem 84: Suppose that 10 balls are put into 5 boxes, with each ball independently being put in box $i$ with probability $p_{i}$, $\sum_{i=1}^{5} p_{i}=1$.
(a) Find the expected number of boxes that do not have any balls.
(b) Find the expected number of boxes that have exactly 1 ball.
3. Theoretical Exercise 16: Let $X$ be a Poisson random variable with parameter $\lambda$. Show that $P\{X=i\}$ increases monotonically and then decreases monotonically as $i$ increases, reaching its maximum when $i$ is the largest integer not exceeding $\lambda$. Hint: Consider $P\{X=i\} / P\{X=i-1\}$.
4. Theoretical Exercise 25: Suppose that the number of events that occur in a specified time is a Poisson random variable with parameter $\lambda$. If each event is "counted" with probability $p$, independently of every other event, show that the number of events that are counted is a Poisson random variable with parameter $\lambda p$. Also, give an intuitive argument as to why this should be so. As an application of the preceding result, suppose taht the number of distinct uranium deposits in a given area is a Poisson random variable with parameter $\lambda=10$. If, in a fixed period of time, each deposit is discovered independently with probability $\frac{1}{50}$, find the probability that (a) exactly 1 , (b) at least 1 , and (c) at most 1 deposit is discovered during that time.

## B. FROM TEXTBOOK CHAPTER FIVE:

1. Problem 8: The lifetime in hours of an electronic tube is a random variable having a probability density function given by

$$
f(x)=x e^{-x} \quad x \geq 0
$$

Compute the expected lifetime of such a tube.
2. Problem 11: A point is chosen at random on a line segment of length $L$. Interpret this statement, and find the probability that the ratio of the shorter to the longer segment is less than $1 / 4$.

## C. ANSWER THE FOLLOWING:

1. Compute the expectation of $X^{n}$ where $n$ is a positive integer and $X$ is a uniform random variable on the interval $[0,1]$.
2. How does the answer change if the random variable is instead taken to be uniform on $[0, L]$ for some constant $L$ ?

MIT OpenCourseWare
http://ocw.mit.edu

### 18.440 Probability and Random Variables

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

