18.440: Lecture 32

Strong law of large numbers and Jensen's inequality

Scott Sheffield

MIT

Outline

A story about Pedro

Strong law of large numbers

Jensen's inequality

Outline

A story about Pedro

Strong law of large numbers

Jensen's inequality

Pedro's hopes and dreams

- Pedro is considering two ways to invest his life savings.
- One possibility: put the entire sum in government insured interest-bearing savings account. He considers this completely risk free. The (post-tax) interest rate equals the inflation rate, so the real value of his savings is guaranteed not to change.
- Riskier possibility: put sum in investment where every month real value goes up 15 percent with probability .53 and down 15 percent with probability 47 (independently of everything else).
- How much does Pedro make in expectation over 10 years with risky approach? 100 years?

Pedro's hopes and dreams

- How much does Pedro make in expectation over 10 years with risky approach? 100 years?
- Answer: let R_{i} be i.i.d. random variables each equal to 1.15 with probability .53 and .85 with probability .47 . Total value after n steps is initial investment times

$$
T_{n}:=R_{1} \times R_{2} \times \ldots \times R_{n}
$$

- Compute $E\left[R_{1}\right]=.53 \times 1.15+.47 \times .85=1.009$.
- Then $E\left[T_{120}\right]=1.009^{120} \approx 2.93$. And $E\left[T_{1200}\right]=1.009^{1200} \approx 46808.9$

Pedro's financial planning

- How would you advise Pedro to invest over the next 10 years if Pedro wants to be completely sure that he doesn't lose money?
- What if Pedro is willing to accept substantial risk if it means there is a good chance it will enable his grandchildren to retire in comfort 100 years from now?
- What if Pedro wants the money for himself in ten years?
- Let's do some simulations.

Logarithmic point of view

- We wrote $T_{n}=R_{1} \times \ldots \times R_{n}$. Taking logs, we can write $X_{i}=\log R_{i}$ and $S_{n}=\log T_{n}=\sum_{i=1}^{n} X_{i}$.
- Now S_{n} is a sum of i.i.d. random variables.
- $E\left[X_{1}\right]=E\left[\log R_{1}\right]=.53(\log 1.15)+.47(\log .85) \approx-.0023$.
- By the law of large numbers, if we take n extremely large, then $S_{n} / n \approx-.0023$ with high probability.
- This means that, when n is large, S_{n} is usually a very negative value, which means T_{n} is usually very close to zero (even though its expectation is very large).
- Bad news for Pedro's grandchildren. After 100 years, the portfolio is probably in bad shape. But what if Pedro takes an even longer view? Will T_{n} converge to zero with probability one as n gets large? Or will T_{n} perhaps always eventually rebound?

Outline

A story about Pedro

Strong law of large numbers

Jensen's inequality

Outline

A story about Pedro

Strong law of large numbers

Jensen's inequality

Strong law of large numbers

- Suppose X_{i} are i.i.d. random variables with mean μ.
- Then the value $A_{n}:=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$ is called the empirical average of the first n trials.
- Intuition: when n is large, A_{n} is typically close to μ.
- Recall: weak law of large numbers states that for all $\epsilon>0$ we have $\lim _{n \rightarrow \infty} P\left\{\left|A_{n}-\mu\right|>\epsilon\right\}=0$.
- The strong law of large numbers states that with probability one $\lim _{n \rightarrow \infty} A_{n}=\mu$.
- It is called "strong" because it implies the weak law of large numbers. But it takes a bit of thought to see why this is the case.

Strong law implies weak law

- Suppose we know that the strong law holds, i.e., with probability 1 we have $\lim _{n \rightarrow \infty} A_{n}=\mu$.
- Strong law implies that for every ϵ the random variable $Y_{\epsilon}=\max \left\{n:\left|A_{n}-\mu\right|>\epsilon\right\}$ is finite with probability one. It has some probability mass function (though we don't know what it is).
- Note that if $\left|A_{n}-\mu\right|>\epsilon$ for some n value then $Y_{\epsilon} \geq n$.
- Thus for each n we have $P\left\{\left|A_{n}-\mu\right|>\epsilon\right\} \leq P\left\{Y_{\epsilon} \geq n\right\}$.
- So $\lim _{n \rightarrow \infty} P\left\{\left|A_{n}-\mu\right|>\epsilon\right\} \leq \lim _{n \rightarrow \infty} P\left\{Y_{\epsilon} \geq n\right\}=0$.
- If the right limit is zero for each ϵ (strong law) then the left limit is zero for each ϵ (weak law).

Proof of strong law assuming $E\left[X^{4}\right]<\infty$

- Assume $K:=E\left[X^{4}\right]<\infty$. Not necessary, but simplifies proof.
- Note: $\operatorname{Var}\left[X^{2}\right]=E\left[X^{4}\right]-E\left[X^{2}\right]^{2}>0$, so $E\left[X^{2}\right]^{2} \leq K$.
- The strong law holds for i.i.d. copies of X if and only if it holds for i.i.d. copies of $X-\mu$ where μ is a constant.
- So we may as well assume $E[X]=0$.
- Key to proof is to bound fourth moments of A_{n}.
- $E\left[A_{n}^{4}\right]=n^{-4} E\left[S_{n}^{4}\right]=n^{-4} E\left[\left(X_{1}+X_{2}+\ldots+X_{n}\right)^{4}\right]$.
- Expand $\left(X_{1}+\ldots+X_{n}\right)^{4}$. Five kinds of terms: $X_{i} X_{j} X_{k} X_{l}$ and $X_{i} X_{j} X_{k}^{2}$ and $X_{i} X_{j}^{3}$ and $X_{i}^{2} X_{j}^{2}$ and X_{i}^{4}.
- The first three terms all have expectation zero. There are $\binom{n}{2}$ of the fourth type and n of the last type, each equal to at most K. So $E\left[A_{n}^{4}\right] \leq n^{-4}\left(6\binom{n}{2}+n\right) K$.
- Thus $E\left[\sum_{n=1}^{\infty} A_{n}^{4}\right]=\sum_{n=1}^{\infty} E\left[A_{n}^{4}\right]<\infty$. So $\sum_{n=1}^{\infty} A_{n}^{4}<\infty$ (and hence $A_{n} \rightarrow 0$) with probability 1 .

Outline

A story about Pedro

Strong law of large numbers

Jensen's inequality

Outline

A story about Pedro
 Strong law of large numbers

Jensen's inequality

Jensen's inequality statement

- Let X be random variable with finite mean $E[X]=\mu$.
- Let g be a convex function. This means that if you draw a straight line connecting two points on the graph of g, then the graph of g lies below that line. If g is twice differentiable, then convexity is equivalent to the statement that $g^{\prime \prime}(x) \geq 0$ for all x. For a concrete example, take $g(x)=x^{2}$.
- Jensen's inequality: $E[g(X)] \geq g(E[X])$.
- Similarly, if g is concave (which means $-g$ is convex), then $E[g(X)] \leq g(E[X])$.
- If your utility function is concave, then you always prefer a safe investment over a risky investment with the same expected return.

More about Pedro

- Disappointed by the strong law of large numbers, Pedro seeks a better way to make money.
- Signs up for job as "hedge fund manager". Allows him to manage $C \approx 10^{9}$ dollars of somebody else's money. At end of each year, he and his staff get two percent of principle plus twenty percent of profit.
- Precisely: if X is end-of-year portfolio value, Pedro gets

$$
g(X)=.02 C+.2 \max \{X-C, 0\}
$$

- Pedro notices that g is a convex function. He can therefore increase his expected return by adopting risky strategies.
- Pedro has strategy that increases portfolio value 10 percent with probability .9 , loses everything with probability .1.
- He repeats this yearly until fund collapses.
- With high probability Pedro is rich by then.

Perspective

- The "two percent of principle plus twenty percent of profit" is common in the hedge fund industry.
- The idea is that fund managers have both guaranteed revenue for expenses (two percent of principle) and incentive to make money (twenty percent of profit).
- Because of Jensen's inequality, the convexity of the payoff function is a genuine concern for hedge fund investors. People worry that it encourages fund managers (like Pedro) to take risks that are bad for the client.
- This is a special case of the "principal-agent" problem of economics. How do you ensure that the people you hire genuinely share your interests?

MIT OpenCourseWare
http://ocw.mit.edu

18.440 Probability and Random Variables

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

