18.440: Lecture 27 Moment generating functions and characteristic functions

Scott Sheffield

MIT

Characteristic functions

Characteristic functions

- Let X be a random variable.
- The moment generating function of X is defined by $M(t) = M_X(t) := E[e^{tX}].$
- When X is discrete, can write M(t) = ∑_x e^{tx} p_X(x). So M(t) is a weighted average of countably many exponential functions.
- When X is continuous, can write M(t) = ∫[∞]_{-∞} e^{tx} f(x)dx. So M(t) is a weighted average of a continuum of exponential functions.
- We always have M(0) = 1.
- If b > 0 and t > 0 then $E[e^{tX}] \ge E[e^{t\min\{X,b\}}] \ge P\{X \ge b\}e^{tb}.$
- If X takes both positive and negative values with positive probability then M(t) grows at least exponentially fast in |t| as |t| → ∞.

18.440 Lecture 27

Moment generating functions actually generate moments

- Let X be a random variable and $M(t) = E[e^{tX}]$.
- ► Then $M'(t) = \frac{d}{dt}E[e^{tX}] = E[\frac{d}{dt}(e^{tX})] = E[Xe^{tX}].$
- in particular, M'(0) = E[X].
- Also $M''(t) = \frac{d}{dt}M'(t) = \frac{d}{dt}E[Xe^{tX}] = E[X^2e^{tX}].$
- So M"(0) = E[X²]. Same argument gives that nth derivative of M at zero is E[Xⁿ].
- Interesting: knowing all of the derivatives of M at a single point tells you the moments E[X^k] for all integer k ≥ 0.
- Another way to think of this: write $e^{tX} = 1 + tX + \frac{t^2X^2}{2!} + \frac{t^3X^3}{3!} + \dots$
- ▶ Taking expectations gives $E[e^{tX}] = 1 + tm_1 + \frac{t^2m_2}{2!} + \frac{t^3m_3}{3!} + \dots$, where m_k is the *k*th moment. The *k*th derivative at zero is m_k .

Moment generating functions for independent sums

- Let X and Y be independent random variables and Z = X + Y.
- Write the moment generating functions as M_X(t) = E[e^{tX}] and M_Y(t) = E[e^{tY}] and M_Z(t) = E[e^{tZ}].
- ▶ If you knew M_X and M_Y , could you compute M_Z ?
- ► By independence, $M_Z(t) = E[e^{t(X+Y)}] = E[e^{tX}e^{tY}] = E[e^{tX}]E[e^{tY}] = M_X(t)M_Y(t)$ for all t.
- In other words, adding independent random variables corresponds to multiplying moment generating functions.

Moment generating functions for sums of i.i.d. random variables

- We showed that if Z = X + Y and X and Y are independent, then M_Z(t) = M_X(t)M_Y(t)
- If X₁...X_n are i.i.d. copies of X and Z = X₁ + ... + X_n then what is M_Z?
- Answer: M_X^n . Follows by repeatedly applying formula above.
- This a big reason for studying moment generating functions. It helps us understand what happens when we sum up a lot of independent copies of the same random variable.

- If Z = aX then can I use M_X to determine M_Z ?
- Answer: Yes. $M_Z(t) = E[e^{tZ}] = E[e^{taX}] = M_X(at)$.
- If Z = X + b then can I use M_X to determine M_Z ?
- Answer: Yes. $M_Z(t) = E[e^{tZ}] = E[e^{tX+bt}] = e^{bt}M_X(t)$.
- Latter answer is the special case of $M_Z(t) = M_X(t)M_Y(t)$ where Y is the constant random variable b.

- ▶ Let's try some examples. What is M_X(t) = E[e^{tX}] when X is binomial with parameters (p, n)? Hint: try the n = 1 case first.
- ► Answer: if n = 1 then $M_X(t) = E[e^{tX}] = pe^t + (1-p)e^0$. In general $M_X(t) = (pe^t + 1 p)^n$.
- What if X is Poisson with parameter $\lambda > 0$?
- Answer: $M_X(t) = E[e^{tx}] = \sum_{n=0}^{\infty} \frac{e^{tn}e^{-\lambda}\lambda^n}{n!} = e^{-\lambda}\sum_{n=0}^{\infty} \frac{(\lambda e^t)^n}{n!} = e^{-\lambda}e^{\lambda e^t} = \exp[\lambda(e^t 1)].$
- We know that if you add independent Poisson random variables with parameters λ₁ and λ₂ you get a Poisson random variable of parameter λ₁ + λ₂. How is this fact manifested in the moment generating function?

What if X is normal with mean zero, variance one?

•
$$M_X(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx} e^{-x^2/2} dx =$$

 $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\{-\frac{(x-t)^2}{2} + \frac{t^2}{2}\} dx = e^{t^2/2}$

- What does that tell us about sums of i.i.d. copies of X?
- If Z is sum of n i.i.d. copies of X then $M_Z(t) = e^{nt^2/2}$.
- What is M_Z if Z is normal with mean μ and variance σ^2 ?
- Answer: Z has same law as $\sigma X + \mu$, so $M_Z(t) = M(\sigma t)e^{\mu t} = \exp\{\frac{\sigma^2 t^2}{2} + \mu t\}.$

More examples: exponential random variables

• What if X is exponential with parameter $\lambda > 0$?

•
$$M_X(t) = \int_0^\infty e^{tx} \lambda e^{-\lambda x} dx = \lambda \int_0^\infty e^{-(\lambda - t)x} dx = \frac{\lambda}{\lambda - t}$$
.

- What if Z is a Γ distribution with parameters λ > 0 and n > 0?
- ► Then Z has the law of a sum of n independent copies of X. So $M_Z(t) = M_X(t)^n = \left(\frac{\lambda}{\lambda - t}\right)^n$.
- Exponential calculation above works for t < λ. What happens when t > λ? Or as t approaches λ from below?

•
$$M_X(t) = \int_0^\infty e^{tx} \lambda e^{-\lambda x} dx = \lambda \int_0^\infty e^{-(\lambda - t)x} dx = \infty$$
 if $t \ge \lambda$.

- Seems that unless f_X(x) decays superexponentially as x tends to infinity, we won't have M_X(t) defined for all t.
- What is M_X if X is standard Cauchy, so that $f_X(x) = \frac{1}{\pi(1+x^2)}$.
- Answer: M_X(0) = 1 (as is true for any X) but otherwise M_X(t) is infinite for all t ≠ 0.
- Informal statement: moment generating functions are not defined for distributions with fat tails.

Characteristic functions

Characteristic functions

- Let X be a random variable.
- ► The characteristic function of X is defined by φ(t) = φ_X(t) := E[e^{itX}]. Like M(t) except with i thrown in.
- Recall that by definition $e^{it} = \cos(t) + i\sin(t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, $\phi_{X+Y} = \phi_X \phi_Y$, just as $M_{X+Y} = M_X M_Y$.
- And $\phi_{aX}(t) = \phi_X(at)$ just as $M_{aX}(t) = M_X(at)$.
- And if X has an *m*th moment then $E[X^m] = i^m \phi_X^{(m)}(0)$.
- But characteristic functions have a distinct advantage: they are always well defined for all t even if f_X decays slowly.

Characteristic functions

Characteristic functions

- In later lectures, we will see that one can use moment generating functions and/or characteristic functions to prove the so-called *weak law of large numbers* and *central limit theorem*.
- Proofs using characteristic functions apply in more generality, but they require you to remember how to exponentiate imaginary numbers.
- Moment generating functions are central to so-called *large* deviation theory and play a fundamental role in statistical physics, among other things.
- Characteristic functions are *Fourier transforms* of the corresponding distribution density functions and encode "periodicity" patterns. For example, if X is integer valued, φ_X(t) = E[e^{itX}] will be 1 whenever t is a multiple of 2π.

- ► Let *X* be a random variable and *X_n* a sequence of random variables.
- We say that X_n converge in distribution or converge in law to X if lim_{n→∞} F_{X_n}(x) = F_X(x) at all x ∈ ℝ at which F_X is continuous.
- Lévy's continuity theorem (see Wikipedia): if $\lim_{n\to\infty} \phi_{X_n}(t) = \phi_X(t)$ for all t, then X_n converge in law to X.
- Moment generating analog: if moment generating functions $M_{X_n}(t)$ are defined for all t and n and $\lim_{n\to\infty} M_{X_n}(t) = M_X(t)$ for all t, then X_n converge in law to X.

18.440 Probability and Random Variables Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.