18.440 PROBLEM SET 8: DUE APRIL 25

A. FROM TEXTBOOK CHAPTER SEVEN:

1. Problem 51: The joint density of X and Y is given by $f(x, y)=\frac{e^{-y}}{y}$, $0<x<y, 0<y<\infty$. Compute $E\left[X^{3} \mid Y=y\right]$.
2. Problem 67: Consider a gambler who, at each gamble, either wins or loses her bet with respective probabilities p and $1-p$. A popular gambling system knkown as the Kelly strategy is to always bet the fraction $2 p-1$ of your current fortune when $p>1 / 2$. Compute the expected fortune after n gambles of a gambler who starts with x units and employs the Kelly strategy.
3. Problem 76: Let X be the value of the first die and Y the sum of the values when two standard (six-sided) dice are rolled. Compute the joint moment generating function of X and Y.
4. Theoretical Exercise 29: Let X_{1}, \ldots, X_{n} be independent and identically distriuted random variables. Find

$$
E\left[X_{1} \mid X_{1}+\ldots+X_{n}=x\right]
$$

5. Theoretical Exercise 36: One ball at a time is randomly selected from an urn containing a white and b black balls until all of the remaining balls are of the same color. Let $M_{a, b}$ denote the expected number of balls left in the urn when the experiment ends. Compute a recursive formula for $M_{a, b}$ and solve when $a=3$ and $b=5$.
6. Theoretical Exercise 48: If $Y=a X+b$, where a and b are constants, express the moment generating function of Y in terms of the moment generating function of X.
7. Theoretical Exercise 52: Show how to compute $\operatorname{Cov}(X, Y)$ from the joint moment generating function of X and Y.
8. Theoretical Exercise 54: If Z is a standard normal random variable, what is $\operatorname{Cov}\left(Z, Z^{2}\right)$?
B. (Just for fun - not to hand in) Let $V=\left(V_{1}, V_{2}, \ldots, V_{n}\right)$ be a random vector whose components V_{i} are independent, identically distributed normal random variables of mean zero, variance one. Note that the density function for V may be written as $f(v)=(2 \pi)^{-n / 2} e^{-|v|^{2} / 2}$ where $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $|v|^{2}=v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}$.
9. Let M be an $n \times n$ matrix. Write $W=M V$ and compute the mean and covariance of W_{i} for each $1 \leq i \leq n$.
10. Write the probability density function for W.
11. Classify the set of matrices M for which $M V$ has the same probability density function as V.
12. Is every n-dimensional mean zero multivariate normal distribution (as defined in Section 7.8 of the textbook) the distribution of $M V$ for some choice of M ? If so, to what extent does the distribution uniquely determine M ?
C.(Just for fun - not to hand in) Try to formulate and prove a version of the central limit theorem that shows that sums of independent heavy-tailed random variables (divided by appropriate constants) converge in law to a stable random variable (instead of a normal random variable). See for example http://eom.springer.de/A/a013920.htm or the wikipedia articles on stable distributions for definitions and hints. You will need to use characteristic functions instead of the moment generating function.

MIT OpenCourseWare
http://ocw.mit.edu

18.440 Probability and Random Variables

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

