18.440 PROBLEM SET SIX DUE APRIL 4

A. FROM TEXTBOOK CHAPTER FIVE:

1. Problem 23: One thousand independent rolls of a fair die will be made. Compute an approximation to the probability that the number 6 will appear between 150 and 200 times inclusively. If the number 6 appears exactly 200 times, find the probability that the number 5 will appear less than 150 times.
2. Problem 27: In 10,000 independent tosses of a coin, the coin lands on heads 5800 times. Is it reasonable to assume that the coin is not fair? Explain.
3. Problem 32: The time (in hours) required to repair a machine is an exponentially distributed random variable with parameter $\lambda=1 / 2$. What is
(a) the probability that a repair time exceeds 2 hours?
(b) the conditional probability that a repair takes at least 10 hours, given that its duration exceeds 9 hours?
4. Theoretical Exercise 9: If X is an exponential random variable with parameter λ, and $c>0$, show that $c X$ is exponential with parameter λ / c.
5. Theoretical Exercise 21: Show that $\Gamma(1 / 2)=\sqrt{\pi}$. Hint: $\Gamma(1 / 2)=\int_{0}^{\infty} e^{-x} x^{-1 / 2} d x$. Make the change of variables $y=\sqrt{2 x}$ and then relate the resulting expression to the normal distribution.
6. Theoretical Exercise 29: Let X be a continuous random variable having cumulative distribution function F. Define the random variable Y by $Y=F(X)$. Show that Y is uniformly distributed over $(0,1)$.
7. Theoretical Exercise 30: Let X have probability density f_{X}. Find the probability density function of the random variable Y defined by $Y=a X+b$.
B. At time zero, a single bacterium in a dish divides into two bacteria. This species of bacteria has the following property: after a bacterium B divides into two new bacteria B_{1} and B_{2}, the subsequent length of time until each B_{i} divides is an exponential random variable of rate $\lambda=1$, independently of everything else happening in the dish.
8. Compute the expectation of the time T_{n} at which the number of bacteria reaches n.
9. Compute the variance of T_{n}.
10. Are both of the answers above unbounded, as functions of n ? Give a rough numerical estimate of the values when $n=10^{50}$.

MIT OpenCourseWare
http://ocw.mit.edu
18.440 Probability and Random Variables

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

