18.443. Pset 4. Due Wednesday, Oct. 4.

1. In the confidence interval for variance of normal distribution we find the constants c_{1}, c_{2} such that

$$
\chi_{n-1}^{2}\left(0, c_{1}\right)=\chi_{n-1}^{2}\left(c_{2}, \infty\right)=\frac{1-\alpha}{2} .
$$

Prove that

$$
\lim _{n \rightarrow \infty} \frac{c_{1}}{n}=1
$$

2. page 409, no. 3 .
3. page 513, no. 5.
4. In pset 3, problem 3 (c), a random variable Y has what density on what subspace?
5. Consider positive numbers $a_{1}, \ldots, a_{n}>0$ and consider a nonnegative definite covariance matrix Σ with entries $\Sigma_{i j}=\sqrt{a_{i} a_{j}}$, i.e.

$$
\Sigma=\left(\begin{array}{ccc}
\sqrt{a_{1} a_{1}} & \cdots & \sqrt{a_{1} a_{n}} \\
\vdots & \vdots & \vdots \\
\sqrt{a_{n} a_{1}} & \cdots & \sqrt{a_{n} a_{n}}
\end{array}\right) .
$$

Normal distribution $N(0, \Sigma)$ has what density on what subspace? Hint: Find an easy obvious choice of a matrix A such that $\Sigma=A A^{T}$. This matrix does not have to be square!

