18.443. Pset 3. Due Wednesday, Sep 27.

1. page 403, no. $3(\mathrm{~b})$.
2. page 403 , no. 4 .
3. (Solve this problem by hand without Matlab, but at each linear algebra step write a Matlab function that would do it, like 'sqrtm', 'eig', 'inv', etc.) Suppose that a vector X has normal distribution $N(0, \Sigma)$ with covariance

$$
\Sigma=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

(a) Write the joint density $f\left(x_{1}, x_{2}\right)$ of X.
(b) Find a 2×2 matrix A such that for i.i.d. standard normal vector g, the distribution of $A g$ is $N(0, \Sigma)$.
(c) What is the distribution of $Y=M X$ where

$$
M=\left(\begin{array}{cc}
-2 & 1 \\
1 & -0.5
\end{array}\right) ?
$$

Does Y have a density on R^{2} ?
4. page 415 , no. 7 (also find the confidence interval for σ^{2}.) Do it by hand and then use 'normfit' to check your answers.
5. Given a sample of size $n=15$ from normal distribution what is the probability that the interval

$$
\left[\bar{X}-\frac{\hat{\sigma}}{\sqrt{n-1}}, \bar{X}+2 \frac{\hat{\sigma}}{\sqrt{n-1}}\right]
$$

will cover unknown parameter μ ?

