
18.443 Problem Set 2 Spring 2015 
Statistics for Applications 

Due Date: 2/20/2015 
  prior  to  3:00pm  

Problems from John A. Rice, Third Edition. [Chapter.Section.P roblem] 

1. Problem 8.10.27; instead of 5 components, suppose there are 8 and 
that the first one fails at 50 days.
 

Suppose that certain electronic components have lifetimes that are
 
exponentially distributed
 

f(t | τ) = (1/τ)exp(−t/τ ), t ≥ 0. 

Five new components are put on test. The first one fails at 100 days,
 
and no further observations are recorded.
 

By the Hint (Example A of Section 3.7), let T1, T2, . . . , Tn be the time
 
until failure of n components (we shall set n = 8 below).
 

These random variables are i.i.d. with cumulative distribution function
 

FT (t) = 1 − exp(−t/τ)
 

Let TMIN = min(T1, T2, . . . , Tn) be the shortest time to failure. (If
 
a system operates with components 1-n connected in a series, then
 
TMIN is the time until failure of the sytem.)
 

The cumulative distribution function of TMin, FTMIN (t) must satisfy:
 

[1 − FTMIN (t)] = P (TMIN > t)  n = P (T1 > t, T2 > t, . . . , Tn > t) = i=1 P (Ti > t) n = [1 − FT (t)] = [1 − FT (t)]
n 

j=1


It follows that the probability density function of TMIN is
 

(t) = − d (t)]fTMIN dt [1 − FTMIN
 

= n[1 − FT (t)]
n−1 d [FT (t)]
dt 

= n[exp(−t/τ )]n−1(1/τ )exp(−t/τ ) 
= (n/τ)exp[−t(n/τ)] 

That is, TMIN ∼ Exponential(rate = n/τ).
 

(a). What is the likelihood function of τ? The data consists of TMIN =
 
50 with n = 8, so
 

lik(τ) = fTMIN (t = 50) = (n/τ)exp[−t(n/τ)]|t=50,n=8 

= (8/τ )exp[−50(8/τ)] 
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(b). What is the mle of τ ? 

The mle maximizes lik(τ ) and J(τ ) = log lik(τ), which is the solution 
to 

d0 = J (τ ) = J(τ)dτ 
d d = [ln(n/τ)] + [−t(n/τ )]dτ dτ 

= − 1 − tn( 1 )2(−1)τ τ 
=⇒ τ̂ = tn = TMIN × n = (50 × 8) = 400. 

(c). What is the sampling distribution of the mle? 

The mle is τ̂ = TMIN × n which is n times the minimum of n i.i.d. 
Exponential(rate = 1/τ ) random variables. The distribution of TMIN 

is Exponential(rate = 5/τ) The mle is 5 the minimum of n exponential 

1 − Fτ̂ (u) = P (τ̂ ≥ u) 
= P (TMIN × n ≥ u) = P (TMIN ≥ u/n) 
= [1 − FT (u/n)]

n 

= [exp(−(u/n)/τ ]n 

= [exp(−u/τ)] 

So Fτ̂ (u) = 1 − exp(−u/τ) which is the cdf of an Exponential(rate = 
1/τ ) random variable. 

(d). What is the standard error of the mle? 

The standard error of the mle is the formula for the square root of the 
variance of the mle, plugging in the mle estimate for the value of the 
true parameter  

StError(τ̂ ) = V ar(τ̂)|τ=τ̂√ 
= τ 2|τ=τ̂ = τ̂ = 400.
 

The variance formula follows from p. A2 Appendix A for
 

Gamma(α = 1, λ = 1/τ), which is Exponential(rate = 1/τ). 

2. Problem 8.10.31;	 answer if George observes three heads and Hilary 
spins the coin five times. 

George spins a coin three times and observes no heads. He then gives 
the coin to Hilary. She spins it until the first head occurs, and ends 
up spinning it four times total. Let θ be the probabiity the coin comes 
up heads. 

(a). What is the likelihood function? 

Let X1, X2, X3 be the outcomes of George’s 3 spins (1=Head, 0=Tail). 
and Let Y be the number of spins Hilary makes until the first head 
occurs. 
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•	 X1, X2, X3 are i.i.d. (independent and identically distributed) 
Bernoulli(θ) random variables 

•	 Y is independent of X1, X2, X3 and has a geometric distribution 
with parameter p = θ (see p. A1 of Appendix A) 

The likelihood function is the value of the joint pmf function for 
(X1, X2, X3, Y ) as a function of θ for fixed outcome 

(X1, X2, X3, Y ) = (1, 1, 1, 5) 

Thus: 
lik(θ) = f(x1, x2, x3, y | θ) 

= f(x1 | θ)f(x2 | θ)f(x3 | θ)f(y | θ) 
3 = [ θxi (1 − θ)1−xi ] × [θ(1 − θ)(y−1)]i=1
 

= θ4(1 − θ)4
 

(b). What is the MLE of θ?
 

The MLE solves
 
d0 = J (θ) = dθ log[lik(θ)]
 
d
 = (4 ln[θ] + 4 ln[(1 − θ)])dθ 
4 4 = + × (−1)θ 1−θ 

=⇒ 4θ = 4(1 − θ) 
=⇒ θ̂ = 4/8 

Note that the MLE of θ is identical to the MLE for 8 Bernoulli trials 
which have 4 Heads and 4 Tails. 

3. Problem 8.10.53 

Let X1, . . . , Xn be i.i.d. uniform on [0, θ] 

(a). Find the method of moments estimate of θ and its mean and 
variance.
 

The first moment of each Xi is
  θ
 
µ1 = E[Xi | θ] = xf(x | θ)dx0 

1 1 =
 θ 

x dx = [x2/2]|θ 
0 θ θ x=0 
1 = [θ2/2] = θ/2θ 

The method of moments estimate solves  
x = 1 n 

1 xi = µ1 = θ/2 n

So
 
ˆ
θMOM = 2x. 
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ˆThe mean and variance of θMOM = 2x can be computed from the 
mean and variance of the i.i.d. Xi: 

µ1 = E[Xi] = θ/2 (shown above)
 
σ2 = µ2 − (µ1)

2 = E[Xi 
2] − E[Xi]

2
 

θ 
= x2f(x | θ)dx − [θ/2]2 

0 
1 = [x3/3]|x=θ 

x=0 − [θ/2]2 
θ 

= [θ2/3] − [θ2/4] = θ2/12 

It follows that 
1 nE[θ̂MOM ] = E[2X] = 2 × 1 E[Xi] = 2 × nn θ = θ n
 

V ar[θ̂MOM ] = V ar[2X] = 4 × V ar[X]
 
= 4 × V ar[Xi]/n
 
= 4 × (θ2/12)/n = θ2/(3n).
 

(b). Find the mle of θ. 

The mle θ̂MLE maximizes the likelihood function 
nlik(θ) = f(x1, . . . , xn | θ) = [1 × 1[0,θ](xi)]i=1 θ 

1 = 1[0,θ](max(x1, . . . , xn))θn 
1 = θn 1[max(x1,...,xn),∞)(θ)  
1, if x ∈ [a, b]

Where 1[a,b](x) = 0, if x  ∈ [a, b] 

The likelihood function is maximized by the minimizing θ. Since θ ≥ 
max(x1, . . . , xn) the likelihood is maximized with 

θ̂ = max(x1, . . . , xn) 

(c). Find the probability density of the mle, and calculate its mean 
and variance. Compare the variance, the bias, and the mean squared 
error to those of the method of moments estimate. 

The probability density of the mle is the probability density of the 
maximum member of the sample X1, . . . , Xn 

We compute the cdf (cumulative distribution function) of the mle first. 

Fˆ (t) =	 P (θ̂MLE ≤ t)θMLE 

= P (max(X1, . . . , Xn) ≤ t) = P (X1 ≤ t, X2 ≤ t, . . . Xn ≤ t) 
= [P (Xi ≤ t)]n = [ t ]n 

θ 

The density of θ̂MLE is the derivative of the cdf: 
d(t) = (t) = n[ t ]n−1[1 ]fθ̂MLE	 dt Fθ̂M LE θ θ
 
ntn−1
 

= , 0 < t < θ 
θn 

4 

∫

∑

∏



 

 

ˆThe mean and variance of θMLE can be computed directly 

ˆ θ 
E[θMLE ] = 

= 

= 

= 

= 

V ar[θ̂MLE ] 

0 [tfˆ (t)]dtθM LE � θ ntn−1 

[t ]dt 
θn 

0 
tn+1n 

]|t=θ[ t=0θn n + 1
θn+1n 

[ ]
θn n + 1
n 

θ 
n + 1 

= E[θ̂2 ] − (E[θ̂MLE ])
2 

MLE 
θ 

= [t2fˆ (t)]dt − (E[θ̂MLE ])
2 

0 θMLE � θ 
2 nt

n−1 

= 
0 
n 

= 
θn 

n 
= 

θn 

[t ]dt 
θn
 

tn+2
 

]|t=θ
[ t=0 − (E[θ̂MLE ])
2 

n + 2
θn+2 

[ ] − (E[θ̂MLE ])
2 

n + 2
n 

= θ2 − (E[θ̂MLE ])
2 

n + 2 
n n 

= θ2 − [ θ]2 

n + 2 n + 1 
n n= θ2 × [ − 

2 

n+2 (n+1)2 ] 
n= θ2 × 

(n+2)(n+1)2 

Now, to compare the variance, the bias, and the mean squared error 
to those of the method of moments estimate, we apply the formulas: 

Bias(θ̂) = E[θ̂] − θ 
MSE(θ̂) = V ar(θ̂) + [Bias(θ̂)]2 

So, we can compare: 

V ar(θ̂MLE) 

Bias(θ̂MLE ) 
MSE(θ̂MLE ) 

V ar(θ̂MOM ) 
Bias(θ̂MOM ) 
MSE(θ̂MOM ) 

n = θ2 × 
(n+2)(n+1)2 

1= E[θ̂MLE ] − θ = − θ n+1 

= V ar(θ̂MLE) + [Bias(θ̂MLE )]
2 

n 1 = θ2 × [ + (− )2]
(n+2)(n+1)2 n+1 

2n+2 = θ2 × [
(n+2)(n+1)2 ] 

= θ2/3n 
= E[θ̂MOM ] − θ = 0 
= V ar(θ̂MOM ) + [Bias(θ̂MOM )]

2 

= θ2/3n 
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Note that as n grows large, the MLE has variance and MSE which 
decline to order O(n−2) while the MOM estimate declines slower, to 
order O(n−1). 

(d). Find a modification of the mle that renders it unbiased. 

To adjust θ̂MLE to make it unbiased, simply multiply it by the factor 
(n+1 )n 

θ̂∗ = (n+1 )ˆMLE n θMLE 

4. Problem 8.10.57 

Solution: 
σ2 σ2 

(a). E[s2] = E[ σ
2 
χ2 
n−1] = × E[χ2 

n−1] = × (n − 1) = σ2 
n−1 n−1 n−1
 

and E[σ̂2] = E[n−1 s2] = n−1 E[S2] = n−1 σ2 .
 n n n 

So, s2 is unbiased. 

(b). The MSE of an estimate is the sum of its variance and its squared
 
bias.
 

First, compute the variances of each estimate:
 

V ar[s2] = V ar[ σ
2 
χ2 
n−1] = ( σ

2 
)2 × V ar[χ2 

n−1 n−1 n−1] 

( σ
2 

= )2 × 2(n − 1) = 2σ4/(n − 1)n−1 

V ar[σ̂2] = V ar[(n−1 )s2] = (n−1 )2V ar[s2]n n 
(n−1 = )2 × 2σ4/(n − 1)n 

= 2(n−1 ) × σ4 
n2 

Then, compute the MSEs of each estimate: 

MSE(s2) = V ar[s2] + [Bias(s2)]2 = V ar[s2] = 2σ4/(n − 1) 
MSE(σ̂2) = V ar[σ̂2] + [Bias(σ̂2)]2 

= 2σ4(n−
2 
1 ) + (− 1 )2σ4 

n n 

2σ4(n−1/2 = 2 )
n

Simple algegra proves that MSE(σ̂2) < MSE(s2). 
n(c). For what values of ρ does W = ρ (xi − x)2 have minimal i=1

MSE?
 
MSE(W ) = V ar[W ] + [Bias(W )]2
 

n = ρ2V ar[ (xi − x)2] + [E(W ) − σ2]2 
1 

= ρ2[2(n − 1)σ4] + [ρ(n − 1)σ2 − σ2]2 

= σ4[ρ2(2(n − 1) + (n − 1)2) − 2ρ(n − 1) + 1] 
= σ4[ρ2(n − 1)(n + 1) − 2ρ(n − 1) + 1] 
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Minimizing with respect to ρ we solve: 
d 
dρ MSE(W ) = 0 

1=⇒ ρ = n+1 

So ρ = 1/(n + 1) is the value that minimizes the MSE. 
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