18.443 Problem Set 1 Spring 2014 Statistics for Applications
 Due Date: 2/13/2015
 prior to 3:00pm

Problems from John A. Rice, Third Edition. [Chapter.Section.Problem]

1. Problem 6.4.1
$Z \sim N(0,1)$ and $U \sim \chi_{n}^{2}$ and Z and U are independent.
$T=Z / \sqrt{U / n}$ a Student's t random variable with n degrees of freedom.

Find the density function of T.

Solution:

- The density of Z is $f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{\frac{-1}{2} x^{2}},-\infty<x<+\infty$.
- The density of U is

$$
f_{U}(u)=\left\{\begin{array}{lll}
\frac{1}{\Gamma(n / 2) 2^{n / 2}} u^{(n / 2)-1} e^{-u / 2} & , \text { if } u>0 \\
0 & , \text { if } u \leq 0
\end{array}\right.
$$

- Because Z and U are independent their joint density is

$$
f_{Z, U}(z, u)=f_{Z}(z) f_{U}(u)
$$

- Consider transforming (Z, U) to (T, V), where

$$
T=Z / \sqrt{U / n} \text { and } V=U
$$

computing the joint density of (T, V) and then integrating out V to obtain the marginal density of T.

- Determine the functions $g(T, V)=Z$ and $h(T, V)=U$

$$
\begin{aligned}
& g(T, V)=\sqrt{V / n} T \\
& h(T, V)=V
\end{aligned}
$$

Then the joint density of (T, V) is given by

$$
f_{T, V}(t, v)=f_{Z, U}(g(t, v), h(t, v)) \times J
$$

where J is the Jacobian of the transformation from (Z, U) to (Z, U).
Compute J :
$J=\left|\begin{array}{cc}\frac{\partial g(t, v)}{\partial t} & \frac{\partial g(t, v)}{\partial v} \\ \frac{\partial h(t, v)}{\partial t} & \frac{\partial h(t, v)}{\partial v}\end{array}\right|=\left|\begin{array}{cc}\sqrt{V / n} & \left(\frac{T}{\sqrt{n}}\right) \frac{1}{2} V^{-1 / 2} \\ 0 & 1\end{array}\right|=\sqrt{V / n}$

The joint density of (T, V) is thus

$$
\begin{aligned}
f_{T, V}(t, v) & =f_{Z}(g(t, v)) \times f_{U}(h(t, v)) \times J \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(\sqrt{v / n} t)^{2}} \times \frac{1}{\Gamma(n / 2) 2^{n / 2}} v^{(n / 2)-1} e^{-v / 2} \times \sqrt{v / n} \\
& =\frac{1}{\sqrt{2 \pi n} \Gamma(n / 2) 2^{n / 2}} v^{\frac{1}{2}(n+1)-1} e^{-\frac{v}{2}\left(1+\frac{t^{2}}{n}\right)}
\end{aligned}
$$

Integrate over v to obtain the marginal density of T :

$$
\begin{aligned}
f_{T}(t) & =\int_{0}^{\infty} f_{T, V}(t, v) d v \\
& =\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi n} \Gamma(n / 2) 2^{n / 2}} v^{\frac{1}{2}(n+1)-1} e^{-\frac{v}{2}\left(1+\frac{t^{2}}{n}\right)} d v \\
& =\frac{1}{\sqrt{2 \pi n} \Gamma(n / 2) 2^{n / 2}} \int_{0}^{\infty} v^{\frac{1}{2}(n+1)-1} e^{-\frac{v}{2}\left(1+\frac{t^{2}}{n}\right)} d v
\end{aligned}
$$

The integral factor can be evaluated by recognizing that it is identical to integrating a $\operatorname{Gamma}(\alpha, \lambda)$ density function apart from the normalization constant, with $\alpha=(n+1) / 2$ and $\lambda=\frac{1}{2}\left(1+\frac{t^{2}}{n}\right)$, that is

$$
1=\int_{0}^{\infty} \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} v^{\alpha-1} e^{-\lambda v} d v
$$

So $\Gamma(\alpha) \lambda^{-\alpha}=\int_{0}^{\infty} v^{\alpha-1} e^{-\lambda v} d v$
which gives

$$
\begin{aligned}
\int_{0}^{\infty} v^{\frac{1}{2}(n+1)-1} e^{-\frac{v}{2}\left(1+\frac{t^{2}}{n}\right)} d v & =\Gamma(\alpha) \times \lambda^{-\alpha} \\
& =\Gamma((n+1) / 2) \times\left[\frac{1}{2}\left(1+\frac{t^{2}}{n}\right)\right]^{-(n+1) / 2}
\end{aligned}
$$

Finally we can write

$$
\begin{aligned}
f_{T}(t) & =\int_{0}^{\infty} f_{T, V}(t, v) d v \\
& =\frac{1}{\sqrt{2 \pi n} \Gamma(n / 2) 2^{n / 2}} \int_{0}^{\infty} v^{\frac{1}{2}(n+1)-1} e^{-\frac{v}{2}\left(1+\frac{t^{2}}{n}\right)} d v \\
& =\frac{1}{\sqrt{2 \pi n} \Gamma(n / 2) 2^{n / 2}} \Gamma((n+1) / 2) \times\left[\frac{1}{2}\left(1+\frac{t^{2}}{n}\right)\right]^{-(n+1) / 2} \\
& =\frac{\Gamma((n+1) / 2)}{\sqrt{\pi n} \Gamma(n / 2)} \times\left[1+\frac{t^{2}}{n}\right]^{-(n+1) / 2}
\end{aligned}
$$

2. Suppose the random variable X has a t distribution with n degrees of freedom.
(a). For what values of n is the variance finite/infinite.
(b). Derive a formula for the variance of X (when it is finite).

Solution:

(a). For the variance of the t distribution to be finite it must have a finite second moment:

$$
E\left[T^{2}\right]=\int t^{2} f_{T}(t) d t<\infty
$$

The integrand of this second moment calculation is proportional to

$$
t^{2} f_{T}(t) \propto \frac{t^{2}}{\left[1+\frac{t^{2}}{n}\right]^{(n+1) / 2}} \xrightarrow{t \rightarrow \infty} n^{(n+1) / 2} \times t^{2-(n+1)} \propto t^{1-n}
$$

The integral of this integrand thus converges if and only if

$$
(1-n)<(-1) \text {, which is equivalent to } n>2 \text {. }
$$

(b). If $n>2$, then the variance of T is finite. For such n, the mean of T exists and is zero, so writing $T=Z / \sqrt{U / n}$ for independent $Z \sim N(0,1)$ and $U \sim \chi_{n}^{2}$

$$
\begin{aligned}
\operatorname{Var}(T)=E\left[T^{2}\right] & =E\left[[Z / \sqrt{U / n}]^{2}\right]=E\left[n Z^{2} / U\right] \\
& =n \times E\left[Z^{2}\right] \times E\left[\frac{1}{U}\right] \\
& =1 \times n \times \frac{1}{(n-2)} \\
& =\frac{n}{n-2}
\end{aligned}
$$

The expectation $E\left[\frac{1}{U}\right]=1 /(n-2)$ can be computed directly for $n>2$.
(Note that the formula is undefined for $n=2$ and gives negative values for $n<2$)
3. 6.4.4. Also, add part (c) answer the question if the random variable T follows a standard normal distribution $N(0,1)$. Comment on the differences and why that should be.

Solution:

We are given that T follows a t_{7} distribution. The problem is solved by finding an expression for t_{0} in terms of the cumulative distribution function of T.
(a). To find the t_{0} such that $P\left(|T|<t_{0}\right)=.9$ this is equivalent to $P(T<.95)$, which is solved in R using the function $q t()$ - the quantile function for the t distribution

```
> args(qt)
function (p, df, ncp, lower.tail = TRUE, log.p = FALSE)
>qt(.95,df=7)
[1] 1.894579
```

So, $t_{0}=1.894579$.
(b). $P\left(T>t_{0}\right)=.05$ is equivalent to $P\left(T \leq t_{0}\right)=1-.05=.95$. This is the same t_{0} found in (a).

```
> args(qt)
function (p, df, ncp, lower.tail = TRUE, log.p = FALSE)
> qt(p=.95, df=7)
[1] 1.894579
# Which is equivalent to
> qt(p=.05, df=7, lower.tail=FALSE)
[1] 1.894579
```

(c). For the standard normal distribution we use qnorm() - the quantile function for the $\operatorname{Normal}(0,1)$ distribution

```
> args(qnorm)
function (p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
NULL
> qnorm(.95)
[1] 1.644854
> qnorm(p=.05, lower.tail=FALSE)
[1] 1.644854
```

So for both parts (a) and (b) $t_{0}=1.644854$ for the $N(0,1)$ r.v. versus $t_{0}=1.894579$ for the t distribution with 7 degrees of freedom.
The t_{0} values are larger for the t distribution indicating that the t distribution has heavier tail areas than the $\operatorname{Normal}(0,1)$ distribution. This makes sense because the t distribution equals a $\operatorname{Normal}(0,1)$ random variable divided by a random variable with expectation equal to 1 but positive variance. The possibility of the denominator of the t ratio being less than 1 increases the probability of larger values.
4. Problem 8.10.10.

Use the normal approximation of the Poisson distribution to sketch the approximate sampling distribution of $\hat{\lambda}$ of Example A of Section 8.4. According to this approximation, what is

$$
P\left(\left|\lambda_{0}-\hat{\lambda}\right|>\delta\right) \text { for } \delta=-.5,1,1.5,2,2.5
$$

where λ_{0} is the true value of λ.

Solution:

In the example, the estimate $\hat{\lambda}=\bar{X}=\frac{1}{n} \sum_{1}^{n} X_{i}=24.9$, with $n=23$.
The X_{1}, \ldots, X_{n} are assumed to be i.i.d. (independent and identically distributed) Poisson(λ_{0}) random variables with

$$
E\left[X_{i}\right]=\lambda_{0} \text { and } \operatorname{Var}\left[X_{i}\right]=\lambda_{0}
$$

By the Central Limit Theorem

$$
\sqrt{n} \frac{\left(\bar{X}-\lambda_{0}\right)}{\sqrt{\lambda_{0}}} \xrightarrow{n \rightarrow \infty} N(0,1) .
$$

The approximate sampling distribution of $\hat{\lambda}$ is thus a Normal distribution centered λ_{0} with
standard deviation equal to $\sqrt{\lambda_{0} / n} \approx \sqrt{\frac{\hat{\lambda}}{n}}=\sqrt{24.9 / 23}=1.040485$.
For the probability computations:

$$
\begin{aligned}
P\left(\left|\lambda_{0}-\hat{\lambda}\right|>\delta\right) & =P\left(\left|\lambda_{0}-\bar{X}\right|>\delta\right) \\
& =P\left(\frac{\sqrt{n}\left|\lambda_{0}-\bar{X}\right|}{\sqrt{\lambda_{0}}}>\sqrt{n} \frac{\delta}{\sqrt{\lambda_{0}}}\right) \\
& \approx P\left(|N(0,1)|>\sqrt{n} \frac{\delta}{\sqrt{\hat{\lambda}}}\right) \\
& =P\left(|N(0,1)|>\frac{\sqrt{23}}{\sqrt{24.9}} \delta\right) \\
& =2 \times(1-\Phi(\sqrt{23 / 24.9} \times \delta))
\end{aligned}
$$

Using R and the function pnorm we can compute the desired values:

```
> 2 * 1-pnorm( sqrt(23/24.9) * c(.5,1.,1.5,2.,2.5))
[1] 1.3154201 .1682531 .0747031 .0272921 .008137
```

5. Problem 8.10.13.

In Example D of Secton 8.4, the method of moments estimate was found to be $\hat{\alpha}=3 \bar{X}$. In this example, consider the sampling distribution of $\hat{\alpha}$.
(a). Show that $E(\hat{\alpha})=\alpha$, that is, that the estimate is unbiased.
(b). Show that $\operatorname{Var}(\hat{\alpha})=\left(3-\alpha^{2}\right) / n$.
(c). Use the central limit theorem to deduce a normal approximation to the sampling distribution of $\hat{\alpha}$.
According to this approximation, if $n=25$ and $\alpha=0$, what is the $P(|\hat{\alpha}|>.5)$.

Solution

The sample of values X_{1}, \ldots, X_{n} giving \bar{X} are i.i.d. with density function

$$
f(x \mid \alpha)=\frac{1+\alpha x}{2}, \text { for }-1 \leq x \leq+1
$$

with parameter $\alpha:-1 \leq \alpha \leq 1$. (The values are such that $x_{i}=\cos \left(\theta_{i}\right)$, where θ_{i} is the angle at which electrons are emitted in muon decay.)
(a). Since the X_{i} are i.i.d.

$$
E[\bar{X}]=E\left[X_{i}\right]=\int_{-1}^{1} x \times\left(\frac{1+\alpha x}{2}\right) d x=\alpha / 3
$$

It follows that

$$
E[\hat{\alpha}]=E[3 \bar{X}]=3 E[\bar{X}]=3(\alpha / 3)=\alpha
$$

(b). Since the X_{i} are i.i.d.

$$
\begin{aligned}
\operatorname{Var}[\bar{X}] & =\operatorname{Var}\left[X_{i}\right] / n=\left(\frac{1}{n}\right) \times\left(E\left[X^{2}\right]-E[X]^{2}\right) \\
& =\left(\frac{1}{n}\right) \times\left(\left[\int_{-1}^{1} x^{2} \times\left(\frac{1+\alpha x}{2}\right) d x\right]-(\alpha / 3)^{2}\right) \\
& =\left(\frac{1}{n}\right) \times\left(\left[\int_{-1}^{1} \frac{x^{2}}{2} d x\right]-(\alpha / 3)^{2}\right) \\
& =\left(\frac{1}{n}\right) \times\left([1 / 3]-(\alpha / 3)^{2}\right) \\
& =\frac{3-\alpha^{2}}{9 n}
\end{aligned}
$$

It follows that:

$$
\operatorname{Var}[\hat{\alpha}]=\operatorname{Var}[3 \bar{X}]=9 \times \operatorname{Var}[\bar{X}]=\frac{3-\alpha^{2}}{n} .
$$

(c) By the central limit theorm, for true parameter $\alpha=\alpha_{0}$, it follows that

$$
\hat{\alpha} \xrightarrow{n \rightarrow \infty} N\left(\alpha_{0}, \frac{3-\alpha_{0}^{2}}{n}\right)
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.443 Statistics for Applications

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

