18.445 Introduction to Stochastic Processes Lecture 10: Hitting times

Hao Wu

MIT

16 March 2015

Lac	14/	/ N	117	
пао	vvu	(1)	41.1	

• • • • • • • • • • • •

Recall

Consider a network (G = (V, E), {c(e) : e ∈ E}). The effective resistance is defined by

$$R(a \leftrightarrow z) = (W(a) - W(z))/||I||.$$

 Consider a random walk on the network, the Green's function is defined by

$$G_{\tau}(a, x) = \mathbb{E}[$$
 #visits to x before τ].

We have that

$$G_{\tau_z}(a,a)=c(a)R(a\leftrightarrow z).$$

Today's Goal

- hitting time
- commute time
- transitive network

Suppose that $(X_n)_{n\geq 0}$ is an irreducible Markov chain with transition matrix *P* and stationary measure π . Let τ_x be the hitting time :

$$\tau_{\mathbf{X}}=\min\{n\geq 0: X_n=\mathbf{X}\}.$$

Lemma

The quantity

$$\sum_{x} \mathbb{E}_{a}[\tau_{x}]\pi(x)$$

does not depend on a; and we call it target time and denote it by t_{\odot} .

Н	lao	Wι	1 (М	IT

Hitting time

Definition

$$t_{hit} := \max_{x,y} \mathbb{E}_x[\tau_y] \ge t_{\odot}.$$

Lemma

Suppose that the chain is irreducible with stationary measure π . Then

$$t_{hit} \leq 2 \max_{w} \mathbb{E}_{\pi}[\tau_{w}].$$

Theorem

For an irreducible transitive Markov chain, we have

$$t_{hit} \leq 2t_{\odot}$$
.

	4	日本 本國 医水油 医医水油	≣
Hao Wu (MIT)	18.445	16 March 20	15 4/8

Roughly, a transitive Markov chain "looks the same" from any point in the state space.

Definition

A Markov chain is called transitive if for each pair $(x, y) \in \Omega \times \Omega$, there is a bijection $\varphi : \Omega \to \Omega$ such that

$$\varphi(\mathbf{x}) = \mathbf{y}; \quad \mathbf{P}(\varphi(\mathbf{z}), \varphi(\mathbf{w})) = \mathbf{P}(\mathbf{z}, \mathbf{w}), \forall \mathbf{z}, \mathbf{w}.$$

Example : simple random walk on *N*-cycle, on hypercube.

Lemma

For a transitive Markov chain on finite state space Ω , the uniform measure is stationary.

Commute time

Definition

Suppose that the Markov chain starts from $X_0 = a$. The commute time between *a* and *b* is defined by

$$\tau_{ba} = \min\{n \ge \tau_b : X_n = a\}.$$

Theorem (Commute Time Identity)

Consider a random walk on the network $(G = (V, E), \{c(e) : e \in E\})$, we have

$$\mathbb{E}_{a}[\tau_{ba}] = \mathbb{E}_{a}[\tau_{b}] + \mathbb{E}_{b}[\tau_{a}] = c_{G}R(a \leftrightarrow b).$$

Lemma

Suppose that the Markov chain is irreducible with stationary measure π . Suppose that τ is a stopping time satisfying $\mathbb{P}_a[X_{\tau} = a] = 1$. Then $G_{\tau}(a, x) = \mathbb{E}_a[\tau]\pi(x)$.

Transitive network

Generally, $\mathbb{E}_{a}[\tau_{b}]$ and $\mathbb{E}_{b}[\tau_{a}]$ can be very different (see Exercise 10.3). However, if the network is transitive, they are equal.

Definition

A network $(G = (V, E), \{c(e) : e \in E\})$ is transitive if for each pair $(x, y) \in V \times V$, there exists a bijection $\varphi : V \to V$ such that

$$\varphi(\mathbf{x}) = \mathbf{y}; \quad \mathbf{C}(\varphi(\mathbf{z}), \varphi(\mathbf{w})) = \mathbf{C}(\mathbf{z}, \mathbf{w}), \forall \mathbf{z}, \mathbf{w}.$$

Remark : The random walk on a transitive network is a transitive Markov chain.

Theorem

For the random walk on a transitive (connected) network, for any vertices a and b, we have

$$\mathbb{E}_{\boldsymbol{a}}[\tau_{\boldsymbol{b}}] = \mathbb{E}_{\boldsymbol{b}}[\tau_{\boldsymbol{a}}].$$

For random walk on network

- $t_{\odot} \leq t_{hit} \leq 2 \max_{w} \mathbb{E}_{\pi}[\tau_{w}].$
- $\mathbb{E}_{a}[\tau_{ba}] = c_{G}R(a \leftrightarrow b).$

For random walk on transitive network

•
$$t_{\odot} \leq t_{hit} \leq 2t_{\odot}$$
.

- $\mathbb{E}_a[\tau_b] = \mathbb{E}_b[\tau_a].$
- $2\mathbb{E}_a[\tau_b] = c_G R(a \leftrightarrow b).$

18.445 Introduction to Stochastic Processes Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.