18.445 Introduction to Stochastic Processes Lecture 19: Galton-Watson tree

Hao Wu

MIT

27 April 2015

Hao Wu (MIT)

▲ E ▶ E • つへの 27 April 2015 1 / 7

Rooted trees

A **tree** is a connected graph with no cycles. A **rooted tree** has a distinguished vertex v_0 , called the root. The **depth** of a vertex v is its graph distance to the root. A **leaf** is a vertex with degree one. Consider a **regular rooted tree** :

- each vertex has a fixed number (say m) of offspring
- *Z_n* : the number vertices in the *n*-th generation
- for regular tree : $Z_n = m^n$

イロト イポト イヨト イヨ

In real life, we often encounter trees where the number of offspring of a vertex is random.

Galton-Watson tree

- It starts with one initial ancestor
- it produces a certain number of offspring according to some distribution μ
- the new particles form the first generation
- each of the new particles produces offspring according to μ , independently of each other
- the system regenerates
- Z_n : the number of particles in n-th generation

Observation : If $Z_n = 0$ for some *n*, then $Z_m = 0$ for all $m \ge n$ \rightarrow the family become extinct **Question :** extinction probability $q = \mathbb{P}[Z_n = 0$ eventually]?

Extinction probability

Notations :

- μ : let p_k be the probability that a particle has k children, $k \ge 0$
- $\sum_{0}^{\infty} p_{k} = 1$
- $m := \mathbb{E}[Z_1] = \sum_0^\infty k p_k$
- Assume $p_0 + p_1 < 1$.
- Convention 0⁰ = 1
- extinction probability $q = \mathbb{P}[Z_n = 0$ eventually]
- *f* : the generating function of the reproduction law :

$$f(s) := \mathbb{E}[s^{Z_1}] = \sum_{0}^{\infty} s^k p_k.$$

• $f(0) = p_0, f(1) = 1, f'(1) = m.$

Theorem

The extinction probability q is the smallest root of f(s) = s for $s \in [0, 1]$. In particular, q = 1 if $m \le 1$, and q < 1 if m > 1.

Theorem

The extinction probability q is the smallest root of f(s) = s for $s \in [0, 1]$. In particular, q = 1 if $m \le 1$, and q < 1 if m > 1.

- In the subcritical case (m < 1), the GW tree dies out with probability 1
- In the critical case (m = 1), the GW tree dies out with probability 1
- In the supercritical case (m > 1), the GW tree survives with strictly positive probability 1 – q.

Question : In the supercritical case m > 1, how fast the tree grows ? We know that $\mathbb{E}[Z_n] = m^n$, do we have $Z_n \sim m^n$?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assumption : $m \in (1, \infty)$. Define $W_n = Z_n/m^n$.

- $(W_n)_{n\geq 0}$ is a non-negative martingale
- $W_n \rightarrow W$ a.s.
- By Fatou's Lemma, we have $\mathbb{E}[W] \leq 1$

Observation : If W > 0, then $Z_n \sim m^n$; if W = 0, then $Z_n \ll m^n$.

Theorem (Kesten and Stigum)

 $\mathbb{E}[W] = 1 \Leftrightarrow \mathbb{P}[W > 0 \mid \textit{non-extinction}] \Leftrightarrow \mathbb{E}[Z_1 \log^+ Z_1] < \infty$

Growth rate

Assumption : $m \in (1, \infty)$. Define $W_n = Z_n/m^n$.

- $(W_n)_{n\geq 0}$ is a non-negative martingale
- $W_n \rightarrow W$ a.s.
- By Fatou's Lemma, we have $\mathbb{E}[W] \leq 1$

Observation : If W > 0, then $Z_n \sim m^n$; if W = 0, then $Z_n \ll m^n$.

Theorem

If
$$\mathbb{E}[Z_1^2] < \infty$$
, then $\mathbb{E}[W] = 1$ and $\mathbb{P}[W = 0] = q$.

Lemma

$$\mathbb{P}[W=0]$$
 is either q or 1.

18.445 Introduction to Stochastic Processes Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.