18.445 Introduction to Stochastic Processes

Lecture 1: Introduction to finite Markov chains

Hao Wu

MIT

04 February 2015

Course description

Course description :

This course is an introduction to Markov chains, random walks, martingales.

Time and place :

Course : Monday and Wednesday, 11 :00 am-12 :30pm.
Bibliography : Markov Chains and Mixing Times, by David A. Levin, Yuval Peres, Elizabeth L. Wilmer

Grading

Grading :

- 5 Homeworks (10\% each)
- Midterm (15\%, April 1st.)
- Final (35\%, May)

Homeworks :

Homeworks will be collected at the end of the class on the due date.

- Due dates : Feb. 23rd, Mar. 9th, Apr. 6th, Apr. 22nd, May. 4th
- Collaboration on homework is encouraged.
- Individually written solutions are required.

Exams :

The midterm and the final are closed book, closed notes, no calculators.

Today's goal

(1) Definitions
(2) Gambler's ruin
(3) coupon collecting
(4) stationary distribution
Ω : finite state space
P : transition matrix $|\Omega| \times|\Omega|$

Definition

A sequence of random variables $\left(X_{0}, X_{1}, X_{2}, \ldots\right)$ is a Markov chain with state space Ω and transition matrix P if for all $n \geq 0$, and all sequences $\left(x_{0}, x_{1}, \ldots, x_{n}, x_{n+1}\right)$, we have that

$$
\begin{aligned}
& \mathbb{P}\left[X_{n+1}=x_{n+1} \mid X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right] \\
= & \mathbb{P}\left[X_{n+1}=x_{n+1} \mid X_{n}=x_{n}\right]=P\left(x_{n}, x_{n+1}\right) .
\end{aligned}
$$

Gambler's ruin

Consider a gambler betting on the outcome of a sequence of independent fair coin tosses.
If head, he gains one dollar.
If tail, he loses one dollar.
If he reaches a fortune of N dollars, he stops.
If his purse is ever empty, he stops.
Questions :

- What are the probabilities of the two possible fates?
- How long will it take for the gambler to arrive at one of the two possible fates?

Gambler's ruin

The gambler's situation can be modeled by a Markov chain on the state space $\{0,1, \ldots, N\}$:

- X_{0} : initial money in purse
- X_{n} : the gambler's fortune at time n
- $\mathbb{P}\left[X_{n+1}=X_{n}+1 \mid X_{n}\right]=1 / 2$,
- $\mathbb{P}\left[X_{n+1}=X_{n}-1 \mid X_{n}\right]=1 / 2$.
- The states 0 and N are absorbing.
- τ : the time that the gambler stops.

Answer to the questions
Theorem
Assume that $X_{0}=k$ for some $0 \leq k \leq N$. Then

$$
\mathbb{P}\left[X_{\tau}=N\right]=\frac{k}{N}, \quad \mathbb{E}[\tau]=k(N-k)
$$

Coupon collecting

A company issues N different types of coupons. A collector desires a complete set.
Question :
How many coupons must he obtain so that his collection contains all N types.
Assumption : each coupon is equally likely to be each of the N types.

Coupon collecting

The collector's situation can be modeled by a Markov chain on the state space $\{0,1, \ldots, N\}$:

- $X_{0}=0$
- X_{n} : the number of different types among the collector's first n coupons.
- $\mathbb{P}\left[X_{n+1}=k+1 \mid X_{n}=k\right]=(N-k) / N$,
- $\mathbb{P}\left[X_{n+1}=k \mid X_{n}=k\right]=k / N$.
- τ : the first time that the collector obtains all N types.

Coupon collecting

Answer to the question.
Theorem

$$
\mathbb{E}[\tau]=N \sum_{k=1}^{N} \frac{1}{k} \approx N \log N
$$

A more precise answer.
Theorem
For any $c>0$, we have that

$$
\mathbb{P}[\tau>N \log N+c N] \leq e^{-c}
$$

Notations

Ω : state space
μ : measure on Ω
P, Q : transition matrices $|\Omega| \times|\Omega|$
f : function on Ω

Notations

- μP : measure on Ω
- $P Q$: transition matrix
- Pf : function on Ω

Associative

- $(\mu P) Q=\mu(P Q)$
- $(P Q) f=P(Q f)$

Notations

Consider a Markov chain with state space Ω and transition matrix P. Recall that

$$
\mathbb{P}\left[X_{n+1}=y \mid X_{n}=x\right]=P(x, y) .
$$

- μ_{0} : the distribution of X_{0}
- μ_{n} : the distribution of X_{n}

Then we have that

- $\mu_{n+1}=\mu_{n} P$.
- $\mu_{n}=\mu_{0} P^{n}$.
- $\mathbb{E}\left[f\left(X_{n}\right)\right]=\mu_{0} P^{n} f$.

Stationary distribution

Consider a Markov chain with state space Ω and transition matrix P. Recall that

$$
\mathbb{P}\left[X_{n+1}=y \mid X_{n}=x\right]=P(x, y)
$$

- μ_{0} : the distribution of X_{0}
- μ_{n} : the distribution of X_{n}

Definition

We call a probability measure π is stationary if

$$
\pi=\pi P
$$

If π is stationary and the initial measure μ_{0} equals π, then

$$
\mu_{n}=\pi, \quad \forall n
$$

Random walks on graphs

Definition

A graph $G=(V, E)$ consists of a vertex set V and an edge set E :

- V : set of vertices
- E : set of pairs of vertices
- When $(x, y) \in E$, we write $x \sim y: x$ and y are joined by an edge. We say y is a neighbor of x.
- For $x \in V$, $\operatorname{deg}(x)$: the number of neighbors of x.

Definition

Given a graph $G=(V, E)$, we define simple random walk on G to be the Markov chain with state space V and transition matrix :

$$
P(x, y)= \begin{cases}1 / \operatorname{deg}(x) & \text { if } y \sim x \\ 0 & \text { else }\end{cases}
$$

Random walks on graphs

Definition

Given a graph $G=(V, E)$, we define simple random walk on G to be the Markov chain with state space V and transition matrix :

$$
P(x, y)= \begin{cases}1 / \operatorname{deg}(x) & \text { if } y \sim x \\ 0 & \text { else }\end{cases}
$$

Theorem

Define

$$
\pi(x)=\frac{\operatorname{deg}(x)}{2|E|}, \quad \forall x \in V
$$

Then π is a stationary distribution for the simple random walk on the graph.

MIT OpenCourseWare
http://ocw.mit.edu

18.445 Introduction to Stochastic Processes

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

