18.445 Introduction to Stochastic Processes Lecture 23: Irreducibility and recurrence

Hao Wu

MIT

11 May 2015

Hao Wu (MIT)

▲ E ▶ E ∽ Q C 11 May 2015 1/5

< ロ > < 同 > < 回 > < 回 >

Recall : $(X_t)_{t\geq 0}$ is a continuous time Markov chain on countable state space with the following requirements

- (Homogeneity) $\mathbb{P}[X_{t+s} = y | X_s = x] = P_t(x, y)$
- (Right-continuity for the chain) For any t ≥ 0, there exists ε > 0, such that X_{t+s} = X_t for all s ∈ [0, ε]
- (Non explosion) The explosion time $\xi = \infty$
- (Right-continuity in the semigroup) P_e → P₀ = I as e → 0, pointwise for each entry.

Consider the transition semigroup $(P_t)_{t \ge 0}$

- the infinitesimal generator $A = \lim_{\epsilon \to 0} (P_{\epsilon} I)$. We write $A = P'_0$.
- Since $P_{t+s} = P_t P_s$, we have $P'_t = A P_t$

Today's goal :

- the infinitesimal generator A characterizes the chain
- irreducible, recurrent

Infinitesimal generator characterizes the transition semigroup

Theorem

Let $(X_t)_{t\geq 0}$ be a continuous time Markov chain with generator A. Then the semigroup $(P_t)_{t\geq 0}$ is the minimal nonnegative solution to the backward equation

$$\mathbf{P}_t' = \mathbf{A}\mathbf{P}_t, \quad \mathbf{P}_0 = \mathbf{I}.$$

Recall

- the limits $q_x = \lim_{\epsilon} (1 P_{\epsilon}(x, x))/\epsilon$, $q_{xy} = \lim_{\epsilon \to 0} P_{\epsilon}(x, y)/\epsilon$ exist.
- the holding time $J_1 : \mathbb{P}_x[J_1 > t] = e^{-q_x t}$
- the jump process : $\mathbb{P}_x[X_{J_1} = y] = q_{xy}/q_x$
- J_1 and X_{J_1} are independent

• • • • • • • • • • • • •

Irreducible

Suppose that $X = (X_t)_{t \ge 0}$ is a continuous time Markov chain.

- the jump times $J_0, J_1, J_2, ... : J_0 = 0, J_{n+1} = \inf\{t > J_n : X_t \neq X_{J_n}\}.$
- the jump chain $Y_0, Y_1, Y_2, ... : Y_n = X_{J_n}$
- the limits $q_x = \lim_{\epsilon} (1 P_{\epsilon}(x, x))/\epsilon$, $q_{xy} = \lim_{\epsilon \to 0} P_{\epsilon}(x, y)/\epsilon$ exist.
- the holding time S_x : exponential with parameter q_x

• the jump process :
$$\mathbb{P}_{x}[X_{J_{1}} = y] = q_{xy}/q_{x}$$

Definition

A continuous time Markov chain is irreducible if and only if its jump chain is irreducible.

Lemma

For $x, y \in \Omega$, the following statements are equivalent

•
$$\exists n \geq 1$$
 such that $\mathbb{P}_{x}[Y_{n} = y] > 0$.

•
$$\exists x_0 = x, x_1, ..., x_n = y$$
 such that $q_{x_0x_1}q_{x_1x_2}\cdots q_{x_{n-1}x_n} > 0$.

•
$$P_t(x, y) > 0$$
 for all $t > 0$

Recurrence

Suppose that X is a continuous time Markov chain and that Y is its jump chain.

Definition

- A state x is recurrent if $\mathbb{P}_{x}[\{t : X_{t} = x\}$ is unbounded] = 1.
- A state x is transient if $\mathbb{P}_{x}[\{t : X_{t} = x\}$ is unbounded] < 1.

Theorem

Let X be an irreducible continuous time Markov chain.

- If x is recurrent for Y, then x is recurrent for X.
- If x is transient for Y, then x is transient for X.
- Either all states are recurrent, or all states are transient.

Remark A state *x* is recurrent for *X* if and only if $\int_0^\infty P_t(x, x)dt = \infty$. A state *x* is transient for *X* if and only if $\int_0^\infty P_t(x, x)dt < \infty$.

18.445 Introduction to Stochastic Processes Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.