18.445 HOMEWORK 4 SOLUTIONS

Exercise 1. Let X, Y be two random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. Let $\mathcal{A} \subset \mathcal{F}$ be a sub- σ-algebra. The random variables X and Y are said to be independent conditionally on \mathcal{A} is for every non-negative measurable functions f, g, we have

$$
\mathbb{E}[f(X) g(Y) \mid \mathcal{A}]=\mathbb{E}[f(X) \mid \mathcal{A}] \times \mathbb{E}[g(Y) \mid \mathcal{A}] \quad \text { a.s. }
$$

Show that X, Y are independent conditionally on \mathcal{A} is and only if for every non-negative \mathcal{A}-measurable random variable Z, and every non-negative measurable functions f, g, we have

$$
\mathbb{E}[f(X) g(Y) Z]=\mathbb{E}[f(X) Z \mathbb{E}[g(Y) \mid \mathcal{A}]]
$$

Proof. If X and Y are independent conditionally on \mathcal{A} and Z is \mathcal{A}-measurable, then

$$
\begin{aligned}
\mathbb{E}[f(X) g(Y) Z] & =\mathbb{E}[\mathbb{E}[f(X) g(Y) Z \mid \mathcal{A}]] \\
& =\mathbb{E}[\mathbb{E}[f(X) g(Y) \mid \mathcal{A}] Z] \\
& =\mathbb{E}[\mathbb{E}[f(X) \mid \mathcal{A}] \mathbb{E}[g(Y) \mid \mathcal{A}] Z] \\
& =\mathbb{E}[\mathbb{E}[f(X) \mathbb{E}[g(Y) \mid \mathcal{A}] Z \mid \mathcal{A}]] \\
& =\mathbb{E}[f(X) Z \mathbb{E}[g(Y) \mid \mathcal{A}]]
\end{aligned}
$$

Conversely, if this equality holds for every nonnegative \mathcal{A}-measurable Z, then in particular, for every $A \in \mathcal{A}$,

$$
\mathbb{E}\left[f(X) g(Y) \mathbb{1}_{A}\right]=\mathbb{E}\left[f(X) \mathbb{E}[g(Y) \mid \mathcal{A}] \mathbb{1}_{A}\right]
$$

It follows from the definition of conditional expectation that

$$
\mathbb{E}[f(X) g(Y) \mid \mathcal{A}]=\mathbb{E}[f(X) \mathbb{E}[g(Y) \mid \mathcal{A}] \mid \mathcal{A}]=\mathbb{E}[f(Y) \mid \mathcal{A}] \mathbb{E}[g(Y) \mid \mathcal{A}]
$$

so X and Y are independent conditionally on \mathcal{A}.
Exercise 2. Let $X=\left(X_{n}\right)_{n \geq 0}$ be a martingale.
(1). Suppose that T is a stopping time, show that X^{T} is also a martingale. In particular, $\mathbb{E}\left[X_{T \wedge n}\right]=\mathbb{E}\left[X_{0}\right]$.

Proof. Since X is a martingale, first we have

$$
\mathbb{E}\left[\left|X_{n}^{T}\right|\right] \leq \mathbb{E}\left[\max _{i \leq n}\left|X_{i}\right|\right] \leq \sum_{i=1}^{n} \mathbb{E}\left[\left|X_{i}\right|\right]<\infty
$$

Moreover, for every $n \geq m$,

$$
\begin{aligned}
\mathbb{E}\left[X_{n}^{T} \mid \mathcal{F}_{n-1}\right] & =\mathbb{E}\left[X_{n-1}^{T}+\left(X_{n}-X_{n-1}\right) \mathbb{1}_{T>n-1} \mid \mathcal{F}_{n-1}\right] \\
& =\mathbb{E}\left[X_{n-1}^{T}\right]+\mathbb{1}_{T>n-1} \mathbb{E}\left[X_{n}-X_{n-1} \mid \mathcal{F}_{n-1}\right] \\
& =\mathbb{E}\left[X_{n-1}^{T}\right]
\end{aligned}
$$

We conclude that X^{T} is a martingale.
(2). Suppose that $S \leq T$ are bounded stopping times, show that $\mathbb{E}\left[X_{T} \mid \mathcal{F}_{S}\right]=X_{S}$, a.s. In particular, $\mathbb{E}\left[X_{T}\right]=\mathbb{E}\left[X_{S}\right]$.
Proof. Suppose S and T are bounded by a constant $N \in \mathbb{N}$. For $A \in \mathcal{F}_{S}$,

$$
\begin{aligned}
\mathbb{E}\left[X_{N} \mathbb{1}_{A}\right] & =\sum_{i=1}^{N} \mathbb{E}\left[X_{N} \mathbb{1}_{A} \mathbb{1}_{S=i}\right] \\
& =\sum_{i=1}^{N} \mathbb{E}\left[\mathbb{E}\left[X_{N} \mid \mathcal{F}_{S}\right] \mathbb{1}_{A} \mathbb{1}_{S=i}\right] \\
& =\sum_{i=1}^{N} \mathbb{E}\left[\mathbb{E}\left[X_{N} \mid \mathcal{F}_{i}\right] \mathbb{1}_{A} \mathbb{1}_{S=i}\right] \\
& =\sum_{i=1}^{N} \mathbb{E}\left[X_{i} \mathbb{1}_{A} \mathbb{1}_{S=i}\right] \\
& =\mathbb{E}\left[X_{S} \mathbb{1}_{A}\right],
\end{aligned}
$$

so $\mathbb{E}\left[X_{N} \mid \mathcal{F}_{S}\right]=X_{S}$. Similarly, $\mathbb{E}\left[X_{N} \mid \mathcal{F}_{T}\right]=X_{T}$. We conclude that

$$
\mathbb{E}\left[X_{T} \mid \mathcal{F}_{S}\right]=\mathbb{E}\left[\mathbb{E}\left[X_{N} \mid \mathcal{F}_{T}\right] \mid \mathcal{F}_{S}\right]=\mathbb{E}\left[X_{N} \mid \mathcal{F}_{S}\right]=X_{S}
$$

(3). Suppose that there exists an integrable random variable Y such that $\left|X_{n}\right| \leq Y$ for all n, and T is a stopping time which is finite a.s., show that $\mathbb{E}\left[X_{T}\right]=\mathbb{E}\left[X_{0}\right]$.
Proof. Since $\left|X_{n}\right| \leq Y$ for all n and T is finite a.s., $\left|X_{n \wedge T}\right| \leq Y$. Then the dominated convergence theorem implies that

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n \wedge T}\right]=\mathbb{E}\left[\lim _{n \rightarrow \infty} X_{n \wedge T}\right]=\mathbb{E}\left[X_{T}\right] .
$$

As $n \wedge T$ is a bounded stopping time, Part (2) implies that $\mathbb{E}\left[X_{n \wedge T}\right]=\mathbb{E}\left[X_{0}\right]$. Hence we conclude that $\mathbb{E}\left[X_{T}\right]=\mathbb{E}\left[X_{0}\right]$.
(4). Suppose that X has bounded increments, i.e. $\exists M>0$ such that $\left|X_{n+1}-X_{n}\right| \leq M$ for all n, and T is a stopping time with $\mathbb{E}[T]<\infty$, show that $\mathbb{E}\left[X_{T}\right]=\mathbb{E}\left[X_{0}\right]$.
Proof. We can write $\mathbb{E}\left[X_{T}\right]=\mathbb{E}\left[X_{0}\right]+\mathbb{E}\left[\sum_{i=1}^{T}\left(X_{i}-X_{i-1}\right)\right]$, so it suffices to show that the last term is zero. Note that

$$
\mathbb{E}\left[\left|\sum_{i=1}^{T}\left(X_{i}-X_{i-1}\right)\right|\right] \leq \mathbb{E}\left[\sum_{i=1}^{T}\left|X_{i}-X_{i-1}\right|\right] \leq M \mathbb{E}[T]<\infty .
$$

Then the dominated convergence theorem implies that

$$
\begin{aligned}
\mathbb{E}\left[\sum_{i=1}^{T}\left(X_{i}-X_{i-1}\right)\right] & =\mathbb{E}\left[\sum_{i=1}^{\infty}\left(X_{i}-X_{i-1}\right) \mathbb{1}_{T \geq i}\right] \\
& =\sum_{i=1}^{\infty} \mathbb{E}\left[\left(X_{i}-X_{i-1}\right) \mathbb{1}_{T \geq i}\right] \\
& =\sum_{i=1}^{\infty} \mathbb{E}\left[X_{i}-X_{i-1}\right] \mathbb{P}[T \geq i] \\
& =0,
\end{aligned}
$$

where we used that $X_{i}-X_{i-1}$ is independent of $\{T \geq i\}=\{T<i-1\}$ as T is a stopping time of the martingale X.

Exercise 3. Let $X=\left(X_{n}\right)_{n \geq 0}$ be Gambler's ruin with state space $\Omega=\{0,1,2, \ldots, N\}$:

$$
X_{0}=k, \quad \mathbb{P}\left[X_{n+1}=X_{n}+1 \mid X_{n}\right]=\mathbb{P}\left[X_{n+1}=X_{n}-1 \mid X_{n}\right]=1 / 2, \quad \tau=\min \left\{n: X_{n}=0 \text { or } N\right\} .
$$

(1). Show that $Y=\left(Y_{n}:=X_{n}^{2}-n\right)_{n \geq 0}$ is a martingale.

Proof. By the definition of X,

$$
\begin{aligned}
\mathbb{E}\left[Y_{n} \mid \mathcal{F}_{n-1}\right] & =\mathbb{E}\left[X_{n}^{2}-n \mid \mathcal{F}_{n-1}\right] \\
& =\mathbb{E}\left[\left(X_{n}-X_{n-1}\right)^{2}+2\left(X_{n}-X_{n-1}\right) X_{n-1}+X_{n-1}^{2}-n \mid \mathcal{F}_{n-1}\right] \\
& =\mathbb{E}\left[\left(X_{n}-X_{n-1}\right)^{2} \mid X_{n-1}\right]+2 \mathbb{E}\left[X_{n}-X_{n-1} \mid X_{n-1}\right] X_{n-1}+X_{n-1}^{2}-n \\
& =1+0+X_{n-1}^{2}-n=Y_{n-1},
\end{aligned}
$$

so Y is a martingale.
(2). Show that Y has bounded increments.

Proof. It is clear that

$$
\begin{aligned}
\left|Y_{n}-Y_{n-1}\right| & =\left|X_{n}^{2}-X_{n-1}^{2}-1\right| \\
& \leq\left|X_{n}+X_{n-1}\right|\left|X_{n}-X_{n-1}\right|+1 \\
& \leq\left|X_{n-1}\right|+1+\left|X_{n-1}\right|+1 \\
& \leq 2 N+2
\end{aligned}
$$

so Y has bounded increments.
(3). Show that $\mathbb{E}[\tau]<\infty$.

Proof. First, let α be the probability that the chain increases for N consecutive steps, i.e.

$$
\alpha=\mathbb{P}\left[X_{i+1}-X_{i}=1, X_{i+2}-X_{i+1}=1, \ldots, X_{i+N}-X_{i+N-1}=1\right]
$$

which is positive and does not depend on i. If $\tau>m N$, then the chain never increases N times consecutively in the first $m N$ steps. In particular,

$$
\{\tau>m N\} \subset \bigcap_{i=0}^{m-1}\left\{X_{i N+1}-X_{i N}=1, X_{i N+2}-X_{i N+1}=1, \ldots, X_{i N+N}-X_{i N+N-1}=1\right\}^{c}
$$

Since the events on the right-hand side are independent and each have probability $1-\alpha<1$,

$$
\mathbb{P}[\tau>m N] \leq(1-\alpha)^{m}
$$

For $m N \leq l<(m+1) N, \mathbb{P}[\tau>l] \leq \mathbb{P}[\tau>m N]$, so

$$
\mathbb{E}[\tau]=\sum_{l=0}^{\infty} \mathbb{P}[\tau>l] \leq \sum_{m=0}^{\infty} N \mathbb{P}[\tau>m N] \leq N \sum_{m=0}^{\infty}(1-\alpha)^{m}<\infty
$$

(4). Show that $\mathbb{E}[\tau]=k(N-k)$.

Proof. Since $\mathbb{E}\left[X_{n+1}-X_{n} \mid \mathcal{F}_{n}\right]=0$ and $\left|X_{n+1}-X_{n}\right|=1, X$ is a martingale with bounded increments. We also showed that Y is a martingale with bounded increments. As $\mathbb{E}[\tau]<\infty$, Exercise 2 Part (4) implies that

$$
\begin{align*}
k=\mathbb{E}\left[X_{0}\right]=\mathbb{E}\left[X_{\tau}\right] & =\mathbb{P}\left[X_{\tau}=0\right] \cdot 0+\mathbb{P}\left[X_{\tau}=N\right] \cdot N \tag{1}\\
\text { and } \quad & k^{2}=\mathbb{E}\left[Y_{0}\right]=\mathbb{E}\left[Y_{\tau}\right] \tag{2}
\end{align*}=\mathbb{E}\left[X_{\tau}^{2}\right]-\mathbb{E}[\tau] . ~ l
$$

Then (1) gives, $\mathbb{P}\left[X_{\tau}=N\right]=k / N$. Hence it follows from (2) that

$$
\mathbb{E}[\tau]=\mathbb{E}\left[X_{\tau}^{2}\right]-k^{2}=\mathbb{P}\left[X_{\tau}=0\right] \cdot 0+\mathbb{P}\left[X_{\tau}=N\right] \cdot N^{2}-k^{2}=k N-k^{2}=k(N-k)
$$

Exercise 4. Let $X=\left(X_{n}\right)_{n \geq 0}$ be the simple random walk on \mathbb{Z}.
(1). Show that $\left(Y_{n}:=X_{n}^{3}-3 n X_{n}\right)_{n \geq 0}$ is a martingale.

Proof. We have

$$
\begin{aligned}
& \mathbb{E}\left[Y_{n}-Y_{n-1} \mid \mathcal{F}_{n-1}\right] \\
= & \mathbb{E}\left[X_{n}^{3}-3 n X_{n}-X_{n-1}^{3}+3(n-1) X_{n-1} \mid \mathcal{F}_{n-1}\right] \\
= & \mathbb{E}\left[\left(X_{n}-X_{n-1}\right)^{3}+3\left(X_{n}-X_{n-1}\right)^{2} X_{n-1}+3\left(X_{n}-X_{n-1}\right) X_{n-1}^{2}-3 n\left(X_{n}-X_{n-1}\right)-3 X_{n-1} \mid \mathcal{F}_{n-1}\right] \\
= & \mathbb{E}\left[\left(X_{n}-X_{n-1}\right)^{3}\right]+3 \mathbb{E}\left[\left(X_{n}-X_{n-1}\right)^{2}\right] X_{n-1}+3 \mathbb{E}\left[X_{n}-X_{n-1}\right] X_{n-1}^{2}-3 n \mathbb{E}\left[X_{n}-X_{n-1}\right]-3 X_{n-1} \\
= & 0+3 X_{n-1}+0-0-3 X_{n-1} \\
= & 0,
\end{aligned}
$$

so Y is a martingale.
(2). Let τ be the first time that the walker hits either 0 or N. Show that, for $0 \leq k \leq N$, we have

$$
\mathbb{E}_{k}\left[\tau \mid X_{\tau}=N\right]=\frac{N^{2}-k^{2}}{3}
$$

Proof. Since $0 \leq X_{n}^{\tau} \leq N$, the martingale Y^{τ} is bounded and thus has bounded increments. The stopping time τ is the same as in Exercise 3, so the same argument implies that

$$
k^{3}=\mathbb{E}\left[Y_{0}\right]=\mathbb{E}\left[Y_{\tau}\right]=\mathbb{E}\left[X_{\tau}^{3}\right]-3 \mathbb{E}\left[\tau X_{\tau}\right]
$$

We compute that $\mathbb{E}\left[X_{\tau}^{3}\right]=\mathbb{P}\left[X_{\tau}=0\right] \cdot 0+\mathbb{P}\left[X_{\tau}=N\right] \cdot N^{3}=k N^{2}$. Hence

$$
\frac{k N^{2}-k^{3}}{3}=\mathbb{E}\left[\tau X_{\tau}\right]=\mathbb{P}\left[X_{\tau}=0\right] \cdot 0+\mathbb{P}\left[X_{\tau}=N\right] \cdot \mathbb{E}\left[\tau N \mid X_{\tau}=N\right]=k \mathbb{E}\left[\tau \mid X_{\tau}=N\right]
$$

We conclude that

$$
\mathbb{E}\left[\tau \mid X_{\tau}=N\right]=\frac{N^{2}-k^{2}}{3}
$$

Exercise 5. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with filtration $\left(\mathcal{F}_{n}\right)_{n \geq 0}$.
(1). For any $m, m^{\prime} \geq n$ and $A \in \mathcal{F}_{n}$, show that $T=m 1_{A}+m^{\prime} 1_{A^{c}}$ is a stopping time.

Proof. Assume without loss of generality that $m \leq m^{\prime}$ (since we can flip the roles of A and A^{c}). If $l<m$, then $\{T \leq l\}=\varnothing \in \mathcal{F}_{l}$. If $m \leq l<m^{\prime}$, then $\{T \leq l\}=A \in \mathcal{F}_{n} \subset \mathcal{F}_{l}$ as $n \leq m \leq l$. If $l \geq m^{\prime}$, then $\{T \leq l\}=\Omega \in \mathcal{F}_{l}$. Hence T is a stopping time.
(2). Show that an adapted process $\left(X_{n}\right)_{n \geq 0}$ is a martingale if and only if it is integrable, and for every bounded stopping time T, we have $\mathbb{E}\left[X_{T}\right]=\mathbb{E}\left[X_{0}\right]$.

Proof. The "only if" part was proved in Exercise 2 Part (2) with $S \equiv 0$.
Conversely, suppose for every bounded stopping time T, we have $\mathbb{E}\left[X_{T}\right]=E\left[X_{0}\right]$. In particular, $\mathbb{E}\left[X_{m}\right]=$ $\mathbb{E}\left[X_{0}\right]$ for every $m \in \mathbb{N}$. Moreover, for $n \leq m$ and $A \in \mathcal{F}_{n}$, Part (1) implies that $T=n \mathbb{1}_{A}+m \mathbb{1}_{A^{c}}$ is a bounded stopping time. Thus

$$
\mathbb{E}\left[X_{m}\right]=\mathbb{E}\left[X_{0}\right]=\mathbb{E}\left[X_{T}\right]=\mathbb{E}\left[X_{n} \mathbb{1}_{A}+X_{m} \mathbb{1}_{A^{c}}\right]
$$

so $\mathbb{E}\left[X_{m} \mathbb{1}_{A}\right]=\mathbb{E}\left[X_{n} \mathbb{1}_{A}\right]$. By definition, this means $\mathbb{E}\left[X_{m} \mid \mathcal{F}_{n}\right]=X_{n}$, so X is a martingale.
Exercise 6. Let $X=\left(X_{n}\right)_{n \geq 0}$ be a martingale in L^{2}.
(1). Show that its increments $\left(X_{n+1}-X_{n}\right)_{n \geq 0}$ are pairwise orthogonal, i.e. for all $n \neq m$, we have

$$
\mathbb{E}\left[\left(X_{n+1}-X_{n}\right)\left(X_{m+1}-X_{m}\right)\right]=0
$$

Proof. First, note that for any $n \leq m$,

$$
\mathbb{E}\left[X_{n} X_{m}\right]=\mathbb{E}\left[\mathbb{E}\left[X_{n} X_{m} \mid \mathcal{F}_{n}\right]\right]=\mathbb{E}\left[X_{n} \mathbb{E}\left[X_{m} \mid \mathcal{F}_{n}\right]\right]=\mathbb{E}\left[X_{n}^{2}\right]
$$

Now assume without loss of generality that $n<m$. Then

$$
\begin{aligned}
\mathbb{E}\left[\left(X_{n+1}-X_{n}\right)\left(X_{m+1}-X_{m}\right)\right] & =\mathbb{E}\left[X_{n+1} X_{m+1}\right]-\mathbb{E}\left[X_{n} X_{m+1}\right]-\mathbb{E}\left[X_{n+1} X_{m}\right]+\mathbb{E}\left[X_{n} X_{m}\right] \\
& =\mathbb{E}\left[X_{n+1}^{2}\right]-\mathbb{E}\left[X_{n}^{2}\right]-\mathbb{E}\left[X_{n+1}^{2}\right]+\mathbb{E}\left[X_{n}^{2}\right]=0 .
\end{aligned}
$$

(2). Show that X is bounded in L^{2} if and only if

$$
\sum_{n \geq 0} \mathbb{E}\left[\left(X_{n+1}-X_{n}\right)^{2}\right]<\infty
$$

Proof. Note that

$$
\mathbb{E}\left[X_{0}\left(X_{n+1}-X_{n}\right)\right]=\mathbb{E}\left[X_{0}^{2}\right]-\mathbb{E}\left[X_{0}^{2}\right]=0
$$

by the computation in Part (1). Thus for any m, we have

$$
\mathbb{E}\left[X_{m}^{2}\right]=\mathbb{E}\left[\left(X_{0}+\sum_{n=0}^{m-1}\left(X_{n+1}-X_{n}\right)\right)^{2}\right]=\mathbb{E}\left[X_{0}^{2}\right]+\sum_{n=0}^{m-1} \mathbb{E}\left[\left(X_{n+1}-X_{n}\right)^{2}\right]
$$

where the cross terms disappear by Part (1). Therefore,

$$
\begin{equation*}
\sup _{m \geq 0} \mathbb{E}\left[X_{m}^{2}\right]=\mathbb{E}\left[X_{0}^{2}\right]+\sum_{n \geq 0} \mathbb{E}\left[\left(X_{n+1}-X_{n}\right)^{2}\right] \tag{3}
\end{equation*}
$$

If X is bounded in L^{2}, i.e. the left-hand side in (3) is bounded, then the sum on the right-hand side is bounded. Conversely, if the sum is bounded, since $\overline{X_{0}}$ is in L^{2}, the left-hand side is also bounded.

MIT OpenCourseWare
http://ocw.mit.edu

18.445 Introduction to Stochastic Processes

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

