
18.445 HOMEWORK 4 SOLUTIONS 

Exercise 1. Let X, Y be two random variables on (Ω, F , P). Let A ⊂ F be a sub-σ-algebra. The random 
variables X and Y are said to be independent conditionally on A is for every non-negative measurable 
functions f, g, we have 

E[f(X)g(Y ) | A] = E[f(X) | A] × E[g(Y ) | A] a.s. 

Show that X, Y are independent conditionally on A is and only if for every non-negative A-measurable 
random variable Z, and every non-negative measurable functions f, g, we have 

E[f(X)g(Y )Z] = E[f(X)ZE[g(Y ) | A]]. 

Proof. If X and Y are independent conditionally on A and Z is A-measurable, then   
E[f(X)g(Y )Z] = E E[f(X)g(Y )Z | A]  

= E E[f(X)g(Y ) | A]Z  
= E E[f(X) | A]E[g(Y ) | A]Z    
= E E f(X)E[g(Y ) | A]Z | A  
= E f(X)ZE[g(Y ) | A] . 

Conversely, if this equality holds for every nonnegative A-measurable Z, then in particular, for every 
A ∈ A,   

E[f(X)g(Y ):A] = E f(X)E[g(Y ) | A]:A . 

It follows from the definition of conditional expectation that   
E[f(X)g(Y ) | A] = E f(X)E[g(Y ) | A] | A = E[f(Y ) | A]E[g(Y ) | A], 

so X and Y are independent conditionally on A. D 

Exercise 2. Let X = (Xn)n≥0 be a martingale. 

(1). Suppose that T is a stopping time, show that XT is also a martingale. In particular, E[XT ∧n] = E[X0]. 

Proof. Since X is a martingale, first we have 
nn 

E[|XT |] ≤ E[max |Xi|] ≤ E[|Xi|] < ∞.n 
i≤n 

i=1 

Moreover, for every n ≥ m, 

E[XT | Fn−1] = E[Xn
T 
−1 + (Xn − Xn−1):T >n−1 | Fn−1]n 

= E[Xn
T 
−1] + :T >n−1E[Xn − Xn−1 | Fn−1] 

= E[Xn
T 
−1]. 

We conclude that XT is a martingale. D 
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(2). Suppose that S ≤ T are bounded stopping times, show that E[XT | FS ] = XS , a.s. In particular,
E[XT ] = E[XS ].

Proof. Suppose S and T are bounded by a constant N ∈ N. For A ∈ FS ,∑N
E[X 1N A] = E[X 1 1N A S=i]

i=1

N

=
∑

E 1

i

[
E[XN ]

=1

| F 1S A S=i

N

]
=
∑

E E
i=1

[
[XN | Fi]1 1A S=i

N

]
=
∑

E
[
X 1 1i A S=i

i=1

=

]
E[X 1S A],

so E[XN | FS ] = XS . Similarly, E[XN | FT ][= XT . We conc]lude that

E[XT | FS ] = E E[XN | FT ] | FS = E[XN | FS ] = XS .

�

(3). Suppose that there exists an integrable random variable Y such that |Xn| ≤ Y for all n, and T is a
stopping time which is finite a.s., show that E[XT ] = E[X0].

Proof. Since |Xn| ≤ Y for all n and T is finite a.s., |Xn T | ≤ Y . Then the dominated convergence theorem∧
implies that

lim E[Xn T ] = E[ lim X∧ n T ] = E[X ]
→∞ n

∧ T .
n →∞

As n ∧ T is a bounded stopping time, Part (2) implies that E[Xn∧T ] = E[X0]. Hence we conclude that
E[XT ] = E[X0]. �

(4). Suppose that X has bounded increments, i.e. ∃M > 0 such that |Xn+1 −Xn| ≤ M for all n, and T is
a stopping time with E[T ] <∞, show that E[XT ] = E[X0].

T
Proof. We can write E[XT ] = E[X0] + E[

∑
i=1(Xi −Xi 1)], so it suffices to show that the last term is zero.−

Note that
T

E[|
∑ T

(Xi

i=1

−Xi 1)|] ≤ E[
∑
|Xi −Xi 1|] ≤ME[T ] <− −

i=1

∞.

Then the dominated convergence theorem implies that

T

E[
∑ ∞

(Xi −Xi 1)] = E[ )−
i

∑
(X X− i i

=1 i=1

− 11 T≥i]

=
∑∞

E[(Xi

i=1

−Xi−1)1T≥i]

∞

=
∑

E[Xi −
=1

−Xi 1]P[T
i

≥ i]

= 0,

where we used that Xi − Xi 1 is independent of {T ≥ i} = {T < i − 1} as T is a stopping time of the−
martingale X. �

Exercise 3. Let X = (Xn)n 0 be Gambler’s ruin with state space Ω =≥ {0, 1, 2, ..., N}:
X0 = k, P[Xn+1 = Xn + 1 |Xn] = P[Xn+1 = Xn − 1 |Xn] = 1/2, τ = min{n : Xn = 0 or N}.
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(1). Show that Y = (Yn := X2
n − n)n≥0 is a martingale.

Proof. By the definition of X,

E[Yn | Fn 1] = E[X2
n − n− | Fn ]−1

= E[(Xn −Xn 1)2 + 2(Xn −X )− n−1 Xn−1 +X2
n−1 − n | Fn−1]

= E[(Xn −Xn−1)2 |Xn−1] + 2E[Xn −X 2
n n−1 |Xn−1]Xn−1 +Xn−1 −

= 1 + 0 +X2
n−1 − n = Yn−1,

so Y is a martingale. �

(2). Show that Y has bounded increments.

Proof. It is clear that

|Yn − Yn 1| = |X2 2
n −Xn 1− −1 − |

≤ |Xn +Xn−1||Xn −Xn−1|+ 1

≤ |Xn + 1 + X + 1−1| | n−1|
≤ 2N + 2,

so Y has bounded increments. �

(3). Show that E[τ ] <∞.

Proof. First, let α be the probability that the chain increases for N consecutive steps, i.e.

α = P[Xi+1 −Xi = 1, Xi+2 −Xi+1 = 1, . . . , Xi+N −Xi+N−1 = 1]

which is positive and does not depend on i. If τ > mN , then the chain never increases N times consecutively
in the first mN steps. In particular,

m−1

{τ > mN} ⊂
⋂
{XiN+1 −XiN = 1, XiN+2 −XiN+1 = 1, . . . , X c

iN+N N

=0

−XiN+ −1 = 1
i

} .

Since the events on the right-hand side are independent and each have probability 1− α < 1,

P[τ > mN ] ≤ (1− α)m.

For mN ≤ l < (m+ 1)N , P[τ > l] ≤ P[τ > mN ], so∑∞ ∞ ∞

E[τ ] = P[τ > l]
l=0

≤ NP[τ > mN ] N (1 α)m < .
m

∑
=0

≤
m

∑
=0

− ∞

�

(4). Show that E[τ ] = k(N − k).

Proof. Since E[Xn+1 −Xn | Fn] = 0 and |Xn+1 −Xn| = 1, X is a martingale with bounded increments. We
also showed that Y is a martingale with bounded increments. As E[τ ] <∞, Exercise 2 Part (4) implies that

k = E[X0] = E[Xτ ] = P[Xτ = 0] · 0 + P[Xτ = N ] ·N (1)

and k2 = E[Y0] = E[Yτ ] = E[X2
τ ]− E[τ ]. (2)

Then (1) gives, P[Xτ = N ] = k/N . Hence it follows from (2) that

E[τ ] = E[X2
τ ]− k2 = P[Xτ = 0] · 0 + P[Xτ = N ] ·N2 − k2 = kN − k2 = k(N − k).

�

Exercise 4. Let X = (Xn)n≥0 be the simple random walk on Z.
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(1). Show that (Yn := X3
n − 3nXn)n≥0 is a martingale.

Proof. We have

E[Yn − Yn−1 | Fn−1]

= E[X3
n − 3nXn −X3

n 1 + 3(n− 1)Xn ]− −1 | Fn−1
= E[(Xn −Xn 1)3 + 3(X −X 2

n n 1) Xn 1 + 3(Xn −Xn )X2 3n(X X ) 3X ]− − − −1 n−1 − n − n−1 − n−1 | Fn−1
= E[(Xn −X 3

n−1) ] + 3E[(Xn −Xn−1)2]X 2
n−1 + 3E[Xn −Xn−1]Xn−1 − 3nE[Xn −Xn−1]− 3Xn−1

= 0 + 3Xn 1 + 0− 0− 3X− n−1

= 0,

so Y is a martingale. �

(2). Let τ be the first time that the walker hits either 0 or N . Show that, for 0 ≤ k ≤ N , we have

N2 k2
Ek[τ |Xτ = N ] =

−
.

3

Proof. Since 0 ≤ Xτ
n ≤ N , the martingale Y τ is bounded and thus has bounded increments. The stopping

time τ is the same as in Exercise 3, so the same argument implies that

k3 = E[Y0] = E[Yτ ] = E[X3
τ ]− 3E[τXτ ].

We compute that E[X3
τ ] = P[Xτ = 0] · 0 + P[X 3 2

τ = N ] ·N = kN . Hence

kN2 − k3
= E[τXτ ] = P[Xτ = 0] · 0 + P[Xτ = N ] · E[τN |Xτ = N ] = kE[τ |Xτ = N ].

3

We conclude that

N2 k2
E[τ |Xτ = N ] =

−
.

3

�

Exercise 5. Let (Ω,F ,P) be a probability space with filtration (Fn)n≥0.

(1). For any m,m′ ≥ n and A ∈ Fn, show that T = m1A +m′1Ac is a stopping time.

Proof. Assume without loss of generality that m ≤ m′ (since we can flip the roles of A and Ac). If l < m,
then {T ≤ l} = ∅ ∈ Fl. If m ≤ l < m′, then {T ≤ l} = A ∈ Fn ⊂ Fl as n ≤ m ≤ l. If l ≥ m′, then
{T ≤ l} = Ω ∈ Fl. Hence T is a stopping time. �

(2). Show that an adapted process (Xn)n≥0 is a martingale if and only if it is integrable, and for every
bounded stopping time T , we have E[XT ] = E[X0].

Proof. The “only if” part was proved in Exercise 2 Part (2) with S ≡ 0.
Conversely, suppose for every bounded stopping time T , we have E[XT ] = E[X0]. In particular, E[Xm] =

E[X0] for every m ∈ N. Moreover, for n ≤ m and A ∈ Fn, Part (1) implies that T = n1A + m1Ac is a
bounded stopping time. Thus

E[Xm] = E[X0] = E[XT ] = E[X 1 1n A +Xm Ac ],

so E[X 1m A] = E[X 1n A]. By definition, this means E[Xm | Fn] = Xn, so X is a martingale. �

Exercise 6. Let X = (Xn)n≥0 be a martingale in L2.
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(1). Show that its increments (Xn+1 −Xn)n 0 are pairwise orthogonal, i.e. for all n = m, we have≥

E[(Xn+1 −Xn)(Xm+1 −Xm)] = 0.

Proof. First, note that for any n ≤ m,

E[XnXm] = E
[
E[XnXm | Fn]

Now assume without loss of generality that n < m. Then

]
= E

[
XnE[Xm | Fn]

]
= E[X2

n].

E[(Xn+1 −Xn)(Xm+1 −Xm)] = E[Xn+1Xm+1]− E[XnXm+1]− E[Xn+1Xm] + E[XnXm]

= E[X2
n+1]− E[X2

n]− E[X2 2
n+1] + E[Xn] = 0.

�

(2). Show that X is bounded in L2 if and∑only if

E[(Xn+1 X
≥0

− n)2] <∞.
n

Proof. Note that
E[X0(Xn+1 −Xn)] = E[X2

0 ]− E[X2
0 ] = 0

by the computation in Part (1). Thus for any m, we have[( m−1 m−1

E 2
[X2

m] = E X0 + (Xn+1 Xn) = E[X2
0 ] + E[(X X 2

n+1 n) ]
n=0

−
]

n=0

−

where the cross terms disappear by P

∑
art (1). Therefore,

) ∑

sup E[X2
m] = E[X2 2

0 ] +
m≥

n

∑
E[(Xn+1

≥0

−Xn) ]. (3)
0

If X is bounded in L2, i.e. the left-hand side in (3) is bounded, then the sum on the right-hand side is
bounded. Conversely, if the sum is bounded, since X0 is in L2, the left-hand side is also bounded. �
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