18.445 Introduction to Stochastic Processes

Lecture 3: Markov chains: time-reversal

Hao Wu

MIT

18 February 2015

Recall

Consider a Markov chain with state space Ω and transition matrix P :

$$
\mathbb{P}\left[X_{n+1}=y \mid X_{n}=x\right]=P(x, y)
$$

- A probability measure π is stationary if $\pi=\pi P$.
- If P is irreducible, there exists a unique stationary distribution.

Today's goal

- Ergodic Theorem
- Time-reversal of Markov chain
- Birth-and-Death chains
- Total variation distance

Ergodic Theorem

Theorem

Let f be a real-valued function defined on Ω. If $\left(X_{n}\right)_{n}$ is an irreducible Markov chain with stationary distribution π, then for any starting distribution μ, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n} f\left(X_{j}\right)=\pi f, \quad \mathbb{P}_{\mu}-\text { a.s. }
$$

In particular,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n} 1_{\left[X_{j}=x\right]}=\pi(x), \quad \mathbb{P}_{\mu}-\text { a.s. }
$$

Detailed balance equations

Definition
Suppose that a probability measrue π on Ω satisfies

$$
\pi(x) P(x, y)=\pi(y) P(y, x), \quad \forall x, y \in \Omega
$$

These are called detailed balance equations.

Lemma

Any distribution π satisfying the detailed balance equations is stationary for P.

Definition

A chain satisfying detailed balance equations is called reversible.

Simple random walk on graph

Example Consider simple random walk on graph $G=(V, E)$ (which is connected). The measure

$$
\pi(x)=\frac{\operatorname{deg}(x)}{2|E|}, \quad x \in \Omega
$$

satisfies detailed balance equations ; therefore the simple random walk on G is reversible.

Time-reversal of Markov chain

Theorem

Let $\left(X_{n}\right)$ be an irreducible Markov chain with transition matrix P and stationary distribution π. Define \widehat{P} to be

$$
\widehat{P}(x, y)=\frac{\pi(y) P(y, x)}{\pi(x)} .
$$

- \widehat{P} is stochastic
- Let $\left(\widehat{X}_{n}\right)$ be a Markov chain with transition matrix \widehat{P}. Then π is also stationary for \widehat{P}.
- For any $x_{0}, \ldots, x_{n} \in \Omega$, we have

$$
\mathbb{P}_{\pi}\left[X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right]=\mathbb{P}_{\pi}\left[\widehat{X}_{0}=x_{n}, \ldots, \widehat{X}_{n}=x_{0}\right]
$$

We call \widehat{X} the time-reversal of X.
Remark If a chain with transition matrix P is reversible, then $\widehat{P}=P$ and \widehat{X} has the same law as X.

Birth-and-Death chains

A birth-and-death chain has state space $\Omega=\{0,1, \ldots, N\}$.
The current state can be though of as the size of some population ; in a single step of the chain there can be at most one birth or death. The transition probabilities can be specified by $\left\{\left(p_{k}, r_{k}, q_{k}\right)_{k=0}^{N}\right\}$ where $p_{k}+r_{k}+q_{k}=1$ for each k and

- p_{k} is the probability of moving from k to $k+1$ when $0 \leq k<N$; $p_{N}=0$
- q_{k} is the probability of moving from k to $k-1$ when $0<k \leq N$; $q_{0}=0$
- r_{k} is the probability of remaining at k when $0 \leq k \leq N$.

Theorem

Every birth-and-death chain is reversible.

Total variation distance

Definition

The total variation distance between two probability measures μ and ν on Ω is defined by

$$
\|\mu-\nu\|_{T V}=\max _{A \subset \Omega}|\mu(A)-\nu(A)| .
$$

Lemma

The total variation distance satisfies triangle inequality :

$$
\|\mu-\nu\|_{T V} \leq\|\mu-\eta\|_{T V}+\|\eta-\nu\|_{T V} .
$$

Three ways to characterize the total variation distance

Lemma

$$
\|\mu-\nu\|_{T V}=\frac{1}{2} \sum_{x \in \Omega}|\mu(x)-\nu(x)|
$$

Lemma

$$
\|\mu-\nu\|_{T V}=\frac{1}{2} \sup \left\{\mu f-\nu f: f \text { satisfying } \max _{x \in \Omega}|f(x)| \leq 1\right\}
$$

Three ways to characterize the total variation distance

Definition

A coupling of two probability measures μ and ν is a pair of random variables (X, Y) defined on the same probability space such that the marginal law of X is μ and the marginal law of Y is ν.

Lemma

$$
\|\mu-\nu\|_{T V}=\inf \{\mathbb{P}[X \neq Y]:(X, Y) \text { is a coupling of } \mu, \nu\}
$$

Definition

We call (X, Y) the optimal coupling if $\mathbb{P}[X \neq Y]=\|\mu-\nu\|_{T V}$.

Homework 1 due Feb. 23rd

MIT OpenCourseWare
http://ocw.mit.edu

18.445 Introduction to Stochastic Processes

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

