18.445 Introduction to Stochastic Processes

Lecture 18: Martingale: Uniform integrable

Hao Wu

MIT
22 April 2015

Announcement

- The drop date is April 23rd.
- Extra office hours today 1 pm-3pm.

Recall Suppose that $X=\left(X_{n}\right)_{n \geq 0}$ is a martingale.

- If X is bounded in L^{1}, then $X_{n} \rightarrow X_{\infty}$ a.s.
- If X is bounded in L^{p} for $p>1$, then $X_{n} \rightarrow X_{\infty}$ a.s. and in L^{p}.

Today's goal

- Do we have convergence in L^{1} ?
- Uniform integrable
- Optional stopping theorem for UI martingales
- Backward martingale

Uniformly integrable

Definition

A collection ($X_{i}, i \in I$) of random variables is uniformly integrable (UI) if

$$
\sup _{i} \mathbb{E}\left[\left|X_{i}\right| 1_{\left[\left|X_{i}\right|>\alpha\right]}\right] \rightarrow 0, \quad \text { as } \alpha \rightarrow \infty
$$

(1) A UI family is bounded in L^{1}, but the converse is not true.
(2) If a family is bounded in L^{p} for some $p>1$, then the family is UI.

Theorem
If $X \in L^{1}(\Omega, \mathcal{F}, \mathbb{P})$, then the class

$$
\{\mathbb{E}[X \mid \mathcal{H}]: \mathcal{H} \text { sub } \sigma \text {-algebra of } \mathcal{F}\}
$$

is UI.

L^{1} convergence

A collection $\left(X_{i}, i \in I\right)$ of random variables is uniformly integrable (UI) if

$$
\sup _{i}\left[\left|X_{i}\right| 1_{\left[\left|X_{i}\right|>\alpha\right]}\right] \rightarrow 0, \quad \text { as } \alpha \rightarrow \infty .
$$

Theorem

Let $X=\left(X_{n}\right)_{n \geq 0}$ be a martingale. The following statements are equivalent.
(1) X is UI.
(2) X_{n} converges to X_{∞} a.s. and in L^{1}.
(3) There exists $Z \in L^{1}$ such that $X_{n}=\mathbb{E}\left[Z \mid \mathcal{F}_{n}\right]$ a.s. for all $n \geq 0$.

Lemma
Let $X \in L^{1}, X_{n} \in L^{1}$ and $X_{n} \rightarrow X$ a.s. Then

$$
X_{n} \rightarrow X \text { in } L^{1} \quad \text { if and only if }\left(X_{n}\right)_{n \geq 0} \text { is Ul. }
$$

L^{1} convergence

- If X is a UI martingale, then $X_{n} \rightarrow X_{\infty}$ a.s. and in L^{1}. Moreover, $X_{n}=\mathbb{E}\left[X_{\infty} \mid \mathcal{F}_{n}\right]$ a.s.
- If X is a Ul supermartingale, then $X_{n} \rightarrow X_{\infty}$ a.s. and in L^{1}. Moreover, $X_{n} \geq \mathbb{E}\left[X_{\infty} \mid \mathcal{F}_{n}\right]$ a.s.
- If X is a UI submartingale, then $X_{n} \rightarrow X_{\infty}$ a.s. and in L^{1}. Moreover, $X_{n} \leq \mathbb{E}\left[X_{\infty} \mid \mathcal{F}_{n}\right]$ a.s.

Example

Let $\left(\xi_{j}\right)_{j \geq 1}$ be non-negative independent random variables with mean one. Set

$$
X_{0}=1, \quad X_{n}=\Pi_{j=1}^{n} \xi_{j}
$$

(1) $\left(X_{n}\right)_{n \geq 0}$ is a non-negative martingale.
(2) X_{n} converges a.s. to some limit $X_{\infty} \in L^{1}$.

Question :

(1) Do we have $\mathbb{E}\left[X_{\infty}\right]=1$?

Answer : Set $a_{j}=\mathbb{E}\left[\sqrt{\xi_{j}}\right] \in(0,1]$.
(1) If $\Pi_{j} a_{j}>0$, then X converges in L^{1} and $\mathbb{E}\left[X_{\infty}\right]=1$.
(2) If $\Pi_{j} a_{j}=0$, then $X_{\infty}=0$ a.s.

Optional Stopping Theorem

Theorem
Let $X=\left(X_{n}\right)_{n \geq 0}$ be a martingale. If $S \leq T$ are bounded stopping times, then $\mathbb{E}\left[X_{T} \mid \mathcal{F}_{S}\right]=X_{S}$, a.s. In particular, $\mathbb{E}\left[X_{T}\right]=\mathbb{E}\left[X_{S}\right]$.

Theorem

Let $X=\left(X_{n}\right)_{n \geq 0}$ be a UI martingale. If $S \leq T$ are stopping times, then $\mathbb{E}\left[X_{T} \mid \mathcal{F}_{S}\right]=X_{S}$, a.s. In particular, $\mathbb{E}\left[X_{T}\right]=\mathbb{E}\left[X_{S}\right]$.

$$
X_{T}=\sum_{0}^{\infty} X_{n} 1_{[T=n]}+X_{\infty} 1_{[T=\infty]}
$$

Summary

Suppose that $X=\left(X_{n}\right)_{n \geq 0}$ is a martingale.

- If X is bounded in L^{1}, then $X_{n} \rightarrow X_{\infty}$ a.s.
- If X is bounded in L^{p} for $p>1$, then $X_{n} \rightarrow X_{\infty}$ a.s. and in L^{p}.
- If X is UI, then $X_{n} \rightarrow X_{\infty}$ a.s. and in L^{1}.

Suppose that $X=\left(X_{n}\right)_{n \geq 0}$ is a UI martingale.

- For any stopping times $S \leq T$, we have $\mathbb{E}\left[X_{T} \mid \mathcal{F}_{S}\right]=X_{S}$ a.s.
- In particular, $\mathbb{E}\left[X_{\infty}\right]=\mathbb{E}\left[X_{0}\right]$.

Applications

Theorem (Kolmogorov's 0-1 law)
Let $\left(X_{n}\right)_{n \geq 0}$ be i.i.d. Let $\mathcal{G}_{n}=\sigma\left(X_{k}, k \geq n\right)$ and $\mathcal{G}_{\infty}=\cap_{n \geq 0} \mathcal{G}_{n}$. Then \mathcal{G}_{∞} is trivial, i.e. every $A \in \mathcal{G}_{\infty}$ has probability $\mathbb{P}[A]$ is either 0 or 1 .

Backwards martingale

Definition

- $(\Omega, \mathcal{G}, \mathbb{P})$ probability space
- A filtration indexed by $\mathbb{Z}_{-}: \cdots \subseteq \mathcal{G}_{-2} \subseteq \mathcal{G}_{-1} \subseteq \mathcal{G}_{0}$.
- A process $X=\left(X_{n}\right)_{n \leq 0}$ is called a backwards martingale, if it is adapted to the filtration, $X_{0} \in L^{1}$ and for all $n \leq-1$, we have

$$
\mathbb{E}\left[X_{n+1} \mid \mathcal{G}_{n}\right]=X_{n}, \text { a.s. }
$$

Consequences

- For all $n \leq 0$, we have $\mathbb{E}\left[X_{0} \mid \mathcal{G}_{n}\right]=X_{n}$.
- The process $X=\left(X_{n}\right)_{n \leq 0}$ is automatically UI.

Theorem

Suppose that $X=\left(X_{n}\right)_{n \geq 0}$ is a forwards martingale and $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ is the filtration.

- If X is bounded in L^{p} for $p>1$, then

$$
X_{n} \rightarrow X_{\infty} \quad \text { a.s.and in } L^{p} ; \quad X_{n}=\mathbb{E}\left[X_{\infty} \mid \mathcal{F}_{n}\right] \quad \text { a.s. }
$$

- If X is UI, then

$$
X_{n} \rightarrow X_{\infty} \quad \text { a.s.and in } L^{1} ; \quad X_{n}=\mathbb{E}\left[X_{\infty} \mid \mathcal{F}_{n}\right] \quad \text { a.s. }
$$

Theorem

Suppose that $X=\left(X_{n}\right)_{n \leq 0}$ is a backwards martingale and $\left(\mathcal{G}_{n}\right)_{n \leq 0}$ is the filtration. Recall that $\mathbb{E}\left[X_{0} \mid \mathcal{G}_{n}\right]=X_{n}$.

- If $X_{0} \in L^{p}$ for $p \geq 1$, then

$$
X_{n} \rightarrow X_{-\infty} \quad \text { a.s.and in } L^{p} ; \quad X_{-\infty}=\mathbb{E}\left[X_{0} \mid \mathcal{G}_{-\infty}\right] \quad \text { a.s. }
$$

where $\mathcal{G}_{-\infty}=\cap_{n \leq 0} \mathcal{G}_{n}$.

Applications

Theorem (Strong Law of Large Numbers)
Let $X=\left(X_{n}\right)_{n \geq 0}$ be i.i.d. in L^{1} with $\mu=\mathbb{E}\left[X_{1}\right]$. Define

$$
S_{n}=\left(X_{1}+\cdots+X_{n}\right) / n
$$

Then

$$
S_{n} / n \rightarrow \mu, \quad \text { a.s.and in } L^{1} .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.445 Introduction to Stochastic Processes

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

