18.445 Introduction to Stochastic Processes

Lecture 6: Lower bounds on mixing times

Hao Wu

MIT

02 March 2015

Recall Suppose that P is irreducible with stationary measure π.

$$
d(n)=\max _{x}\left\|P^{n}(x, \cdot)-\pi\right\|_{T V}, \quad t_{m i x}=\min \{n: d(n) \leq 1 / 4\}
$$

Today's Goal Find lower bounds for the mixing times.

- Bottleneck Ratio
- Distinguishing statistics
- Random walk on hypercube

Bottleneck ratio

Suppose that P is an irreducible transition matrix with stationary measure π. Define

$$
Q(A, B)=\sum_{x \in A, y \in B} \pi(x) P(x, y) .
$$

$Q(A, B)$: the probability of moving from A to B within one step when starting from π.

Definition

For a subset $S \subset \Omega$, the bottleneck ratio of S is defined to be

$$
\Phi(S)=Q\left(S, S^{c}\right) / \pi(S) .
$$

The bottleneck ratio of the whole chain is defined to be

$$
\Phi_{\star}=\min \{\Phi(S): \pi(S) \leq 1 / 2\} .
$$

Bottleneck ratio

Consider simple random walk on a graph $G=(V, E)$.

$$
P(x, y)=\frac{1}{\operatorname{deg}(x)} 1_{[x \sim y]}, \quad \pi(x)=\frac{\operatorname{deg}(x)}{2|E|} .
$$

Then

$$
Q\left(S, S^{c}\right)=\frac{|\partial S|}{2|E|}, \quad \Phi(S)=\frac{|\partial S|}{\sum_{x \in S} \operatorname{deg}(x)}
$$

Bottleneck ratio

Theorem
Suppose that Φ_{\star} is the bottleneck ratio, then

$$
t_{\operatorname{mix}} \geq \frac{1}{4 \Phi_{\star}}
$$

Lemma
For any subset $S \subset \Omega$, let μ_{S} be π conditioned on S :

$$
\mu_{S}(A)=\frac{\pi(A \cap S)}{\pi(S)}
$$

Then

$$
\left\|\mu_{S} P-\mu_{S}\right\|_{T V}=\Phi(S)
$$

Distinguishing statistics

Goal : find a statistic f (a function on Ω) such that the distance between $f\left(X_{n}\right)$ and f can be bounded from below. Recall

$$
\mu f=\sum_{x} \mu(x) f(x), \quad \operatorname{var}_{\mu}(f)=\mu f^{2}-(\mu f)^{2}
$$

Lemma

Let μ and ν be two probability distributions on Ω. Let f be a real-valued function on Ω. If

$$
|\mu f-\nu f| \geq r \sigma, \quad \text { where } \sigma^{2}=\frac{1}{2}\left(\operatorname{var}_{\mu}(f)+\operatorname{var}_{\nu}(f)\right)
$$

then

$$
\|\mu-\nu\|_{T V} \geq \frac{r^{2}}{4+r^{2}}
$$

Random walk on hypercube

N-dimensional hypercube is a graph with vertex set $\Omega=\{0,1\}^{N}$; two vertices are connected by an edge when they differ in exactly one coordinate.

The simple random walk on hypercube moves from one vertex (x^{1}, \ldots, x^{N}) by choosing a coordinate $j \in\{1, \ldots, N\}$ uniformly and setting the new state to ($x^{1}, \ldots, x^{j-1}, 1-x^{j}, x^{j+1}, \ldots, x^{N}$).

The lazy walk remains at its current position with probability $1 / 2$ and moves as above with probability $1 / 2$.
The lazy walk can be constructed using the following random mapping representation:
Uniformly select an element (j, B) in $\{1, \ldots, N\} \times\{0,1\}$, and then update the coordinate j with B.
Let $\left(Z_{n}=\left(j_{n}, B_{n}\right)\right)_{n \geq 1}$ be i.i.d. $\stackrel{d}{\sim}(j, B)$. At each step, the coordinate j_{n} of X_{n-1} is updated by B_{n}.

Random walk on hypercube

Theorem

For the lazy walk on hypercube, there exists a constant $c_{0}>0$ such that

$$
t_{m i x} \geq c N \log N
$$

Proof Suppose that that lazy walk starts from $X_{0}=(1, \ldots, 1)$. Define

$$
W(\vec{x})=\sum_{j=1}^{N} x^{j}
$$

Lemma
If

$$
|\mu f-\nu f| \geq r \sigma, \quad \text { where } \sigma^{2}=\frac{1}{2}\left(\operatorname{var}_{\mu}(f)+\operatorname{var}_{\nu}(f)\right)
$$

then

$$
\|\mu-\nu\|_{T V} \geq \frac{r^{2}}{4+r^{2}}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.445 Introduction to Stochastic Processes

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

