18.445 Introduction to Stochastic Processes Lecture 6: Lower bounds on mixing times

Hao Wu

MIT

02 March 2015

Hao Wu (MIT)

Recall Suppose that *P* is irreducible with stationary measure π .

$$d(n) = \max_{x} ||P^{n}(x, \cdot) - \pi||_{TV}, \quad t_{mix} = \min\{n : d(n) \le 1/4\}.$$

Today's Goal Find lower bounds for the mixing times.

- Bottleneck Ratio
- Distinguishing statistics
- Random walk on hypercube

Bottleneck ratio

Suppose that *P* is an irreducible transition matrix with stationary measure π . Define

$$Q(A,B) = \sum_{x \in A, y \in B} \pi(x) P(x,y).$$

Q(A, B): the probability of moving from A to B within one step when starting from π .

Definition

For a subset $S \subset \Omega$, the bottleneck ratio of *S* is defined to be

$$\Phi(S) = Q(S, S^c)/\pi(S).$$

The bottleneck ratio of the whole chain is defined to be

$$\Phi_{\star} = \min\{\Phi(\boldsymbol{S}) : \pi(\boldsymbol{S}) \leq 1/2\}.$$

Bottleneck ratio

Consider simple random walk on a graph G = (V, E).

$$P(x,y) = \frac{1}{deg(x)} \mathbf{1}_{[x \sim y]}, \quad \pi(x) = \frac{deg(x)}{2|E|}.$$

Then

$$Q(S,S^c) = rac{|\partial S|}{2|E|}, \quad \Phi(S) = rac{|\partial S|}{\sum_{x\in S} deg(x)}.$$

イロト イヨト イヨト イヨト

Bottleneck ratio

Theorem

Suppose that Φ_{\star} is the bottleneck ratio, then

$$t_{mix} \geq \frac{1}{4\Phi_{\star}}.$$

Lemma

For any subset $S \subset \Omega$, let μ_S be π conditioned on S :

$$\mu_{\mathcal{S}}(\mathcal{A}) = \frac{\pi(\mathcal{A} \cap \mathcal{S})}{\pi(\mathcal{S})}.$$

Then

$$||\mu_{\mathcal{S}}\boldsymbol{P}-\mu_{\mathcal{S}}||_{\mathcal{T}V}=\Phi(\mathcal{S}).$$

Hao Wu (MI)	IT	M	()	1	lυ	٨		0	a	Н	
-------------	----	---	----	---	----	---	--	---	---	---	--

Distinguishing statistics

Goal : find a statistic *f* (a function on Ω) such that the distance between $f(X_n)$ and *f* can be bounded from below. Recall

$$\mu f = \sum_{x} \mu(x) f(x), \quad var_{\mu}(f) = \mu f^2 - (\mu f)^2.$$

Lemma

Let μ and ν be two probability distributions on Ω . Let f be a real-valued function on Ω . If

$$|\mu f -
u f| \ge r\sigma$$
, where $\sigma^2 = \frac{1}{2}(var_\mu(f) + var_
u(f))$,

then

$$||\mu - \nu||_{TV} \ge \frac{r^2}{4 + r^2}.$$

Random walk on hypercube

N-dimensional hypercube is a graph with vertex set $\Omega = \{0, 1\}^N$; two vertices are connected by an edge when they differ in exactly one coordinate.

The simple random walk on hypercube moves from one vertex $(x^1, ..., x^N)$ by choosing a coordinate $j \in \{1, ..., N\}$ uniformly and setting the new state to $(x^1, ..., x^{j-1}, 1 - x^j, x^{j+1}, ..., x^N)$.

The lazy walk remains at its current position with probability 1/2 and moves as above with probability 1/2.

The lazy walk can be constructed using the following random mapping representation :

Uniformly select an element (j, B) in $\{1, ..., N\} \times \{0, 1\}$, and then update the coordinate *j* with *B*.

Let $(Z_n = (j_n, B_n))_{n \ge 1}$ be i.i.d. $\stackrel{d}{\sim} (j, B)$. At each step, the coordinate j_n of X_{n-1} is updated by B_n .

Random walk on hypercube

Theorem

For the lazy walk on hypercube, there exists a constant $c_0 > 0$ such that

 $t_{mix} \geq cN \log N$.

Proof Suppose that that lazy walk starts from $X_0 = (1, ..., 1)$. Define

$$W(\overrightarrow{x}) = \sum_{j=1}^{N} x^{j}.$$

Lemma

If
$$|\mu f - \nu f| \ge r\sigma$$
, where $\sigma^2 = \frac{1}{2}(var_{\mu}(f) + var_{\nu}(f))$,

then

$$||\mu - \nu||_{TV} \ge \frac{r^2}{4 + r^2}.$$

18.445 Introduction to Stochastic Processes Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.