18.445 Introduction to Stochastic Processes Lecture 22: Infinitesimal generator

Hao Wu

MIT

06 May 2015

Hao Wu (MIT)

Recall : We consider continuous time Markov chain on countable state space with the following requirement

- (Homogeneity) $\mathbb{P}[X_{t+s} = y \mid X_s = x] = P_t(x, y)$
- (Right-continuity for the chain) For any t ≥ 0, there exists ε > 0, such that X_{t+s} = X_t for all s ∈ [0, ε]

Today's Goal :

- More words about the regularity of continuous time Markov chain
- Infinitesimal generator

< ロ > < 同 > < 回 > < 回 >

Jump process

Consider a continuous time Markov chain $(X_t)_{t\geq 0}$. Define the **jump times** of the chain : $J_0, J_1, J_2, ...$

$$J_0 = 0, \quad J_{n+1} = \inf\{t > J_n : X_t \neq X_{J_n}\}, n \ge 0.$$

Define the **holding times** of the chain : $S_1, S_2, ...$

$$S_n=J_n-J_{n-1}, n\geq 1.$$

Define the jump process of the chain : $Y_0, Y_1, ...$

$$Y_n=X_{J_n}, n\geq 0.$$

By right-continuity, we have S_n > 0.
If J_{n+1} = ∞ for some n, set X_∞ = X_{J_n}
Example Let (X_t)_{t≥0} be a Poisson process. Then the jump process : Y_n = n the holding times : (S_n)_{n≥1} are i.i.d exponential, and the second second

Define the **explosion time** ξ by

$$\xi = \sup_n J_n = \sum_n S_n.$$

We only consider the chains with $\xi = \infty$.

Summary We consider continuous time Markov chain on countable state space with the following requirement

- (Homogeneity) $\mathbb{P}[X_{t+s} = y \mid X_s = x] = P_t(x, y)$
- (Right-continuity for the chain) For any t ≥ 0, there exists ε > 0, such that X_{t+s} = X_t for all s ∈ [0, ε]
- (Non explosion) The explosion time $\xi = \infty$

Continuous time Markov chain

Summary We consider continuous time Markov chain on countable state space with the following requirement

- (Homogeneity) $\mathbb{P}[X_{t+s} = y | X_s = x] = P_t(x, y)$
- (Right-continuity for the chain) For any t ≥ 0, there exists ε > 0, such that X_{t+s} = X_t for all s ∈ [0, ε]
- (Non explosion) The explosion time $\xi = \infty$
- (Right-continuity in the semigroup) P_ϵ → P₀ = I as ϵ → 0, pointwise for each entry.

Consider the transition semigroup $(P_t)_{t\geq 0}$

•
$$P_0 = I$$

- P_t is stochastic for all $t \ge 0$
- $P_{t+s} = P_t P_s$
- $P_{\epsilon} \rightarrow P_0 = I \text{ as } \epsilon \downarrow 0$

Remark Combining (3) and (4), the semigroup is right continuous for

Infinitesimal generator

Theorem

Let $(P_t)_{t\geq 0}$ be a right-continuous transition semigroup.

• For any state x, the limit exists

$$q_x = \lim_{\epsilon \downarrow 0} (1 - P_\epsilon(x, x))/\epsilon \ge 0.$$

For any distinct states x, y, the limit exists
 q_{xy} = lim_{ε↓0} P_ε(x, y)/ε ≥ 0.

Lemma

Let $f : (0, \infty) \to \mathbb{R}$ be a nonnegative function such that $\lim_{\epsilon \downarrow 0} f(\epsilon) = 0$, and assume that f is subadditive, that is,

$$f(t+s) \leq f(t) + f(s), \quad \forall t, s \geq 0.$$

Then the limit $\lim_{\epsilon \downarrow} f(\epsilon)/\epsilon$ exists and equals $\sup_{t>0} f(t)/t$.

Infinitesimal generator

Definition

Set

$$q_{xx} = -q_x = \lim_{\epsilon \downarrow 0} (P_\epsilon(x,x) - 1)/\epsilon, \quad q_{xy} = \lim_{\epsilon \downarrow 0} P_\epsilon(x,y)/\epsilon.$$

Then the matrix $A = (q_{xy})_{x,y \in \Omega}$ is called the infinitesimal generator of the semigroup.

• $q_{xx} \leq 0$ • $q_{xy} \geq 0$ for $y \neq x$

•
$$\sum_{y} q_{xy} = 0$$

イロト イヨト イヨト イヨト

Example 1 Let $(X_t)_{t\geq 0}$ be the Poisson process with intensity $\lambda > 0$. Then

$$q_{ii} = -\lambda, \quad q_{i,i+1} = \lambda.$$

Example 2 Let $(\hat{X}_n)_{n\geq 0}$ be a discrete time Markov chain with transition matrix Q. Let $(N_t)_{t\geq 0}$ be an independent Poisson process with intensity $\lambda > 0$. Define

$$X_t = \hat{X}_{N_t}, \quad t \ge 0.$$

Then $(X_t)_{t\geq 0}$ is a continuous time Markov chain with generator $A = \lambda(Q - I)$.

Infinitesimal generator and the jumping process

Recall : $(X_t)_{t\geq 0}$ is a continuous time Markov chain starting from $X_0 = x$.

$$J_1 = \inf\{t : X_t \neq x\}, \quad Y_1 = X_{J_1}.$$

Theorem

For $x \neq y$, we have

$$\mathbb{P}_{x}[J_{1} > t, X_{J_{1}} = y] = e^{-q_{x}t} \frac{q_{xy}}{q_{x}}$$

In particular,

• $\mathbb{P}_{x}[J_{1} > t] = e^{-q_{x}t}$

•
$$\mathbb{P}_x[X_{J_1} = y] = q_{xy}/q_x$$

• J_1 and X_{J_1} are independent.

Remark : if $q_x = 0$, we say that x is absorbing.

Hao Wu (MIT)

18.445 Introduction to Stochastic Processes Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.