18.445 Introduction to Stochastic Processes Lecture 15: Introduction to martingales

Hao Wu

MIT

08 April 2015

Hao Wu (MIT)

э

1/11

08 April 2015

About the midterm : total=23

```
1 in [80, 100], 5 in [70, 80), 6 in [60, 70)
4 in [40, 60), 7 in [10, 40)
```

Today's Goal :

- probability space
- conditional expectation
- introduction to martingales

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Probability space

Definition

Ω : a set. A collection F of subsets of Ω is called a σ-algebra on Ω if

- $\Omega \in \mathcal{F}$
- $F \in \mathcal{F} \Longrightarrow F^c \in \mathcal{F}$
- $F_1, F_2, \ldots \in \mathcal{F} \Longrightarrow \cup_n F_n \in \mathcal{F}.$

The pair (Ω, \mathcal{F}) is called a measurable space.

Definition

Let (Ω,\mathcal{F}) be a measurable space. A map $\mathbb{P}:\mathcal{F}\to[0,1]$ is called a probability measure if

- $\mathbb{P}[\emptyset] = 0, \mathbb{P}[\Omega] = 1$
- it is countably additive : whenever (*F_n*)_{n≥0} is a sequence of disjoint sets in Ω, then P[∪_n*F_n*] = ∑_n P[*F_n*].

$(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space

- Ω : state space
- \mathcal{F} : σ -algebra
- \mathbb{P} : probability measure

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Conditional expectation—motivation

- $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space
- X, Z two random variables
- elementary conditional probability :

$$\mathbb{P}[X = x \mid Z = z] = \mathbb{P}[X = x, Z = z] / \mathbb{P}[Z = z]$$

• elementary conditional expectation :

$$\mathbb{E}[X \mid Z = z] = \sum_{x} x \mathbb{P}[X = x \mid Z = z]$$

• $Y = \mathbb{E}[X | \sigma(Z)]$?

- Y is measurable with respect to $\sigma(Z)$
- $\mathbb{E}[Y1_{Z=z}] = \mathbb{E}[X1_{Z=z}]$

Conditional Expectation

- $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space
- X is a random variable on the probability space with $\mathbb{E}[|X|] < \infty$
- $\mathcal{A} \subset \mathcal{F}$ is a sub σ -algebra

Then there exists a random variable Y such that

- Y is \mathcal{A} -measurable with $\mathbb{E}[|Y|] < \infty$
- for any $A \in \mathcal{A}$, we have $\mathbb{E}[Y1_A] = \mathbb{E}[X1_A]$.

Moreover, if \tilde{Y} also satisfies the above two properties, then $\tilde{Y} = Y$ a.s. A random variable *Y* with the above two properties is called the **conditional expectation** of *X* given A, and we denote it by $\mathbb{E}[X | A]$.

Remark :

- If $\mathcal{A} = \{\emptyset, \Omega\}$, then $\mathbb{E}[X | \mathcal{A}] = \mathbb{E}[X]$.
- If X is A-measurable, then $\mathbb{E}[X | A] = X$.

• If
$$Y = \mathbb{E}[X \,|\, \mathcal{A}]$$
, then $\mathbb{E}[Y] = \mathbb{E}[X]$

Conditional Expectation—Basic properties

Suppose that $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and that

- X, X_n are random variables on the probability space in L^1
- $\mathcal{A} \subset \mathcal{F}$ is a sub σ -algebra

Then we have the following.

- (Linearity) E[a₁X₁ + a₂X₂ | A] = a₁E[X₁ | A] + a₂E[X₂ | A] for constants a₁, a₂.
- (Positivity) If $X \ge 0$ a.s., then $\mathbb{E}[X \mid \mathcal{A}] \ge 0$ a.s.
- (Monotone convergence) If $0 \le X_n \uparrow X$ a.s. then $\mathbb{E}[X_n | \mathcal{A}] \uparrow \mathbb{E}[X | \mathcal{A}]$ a.s.
- (Fatou's Lemma) If $X_n \ge 0$, then $\mathbb{E}[\liminf_n X_n \mid \mathcal{A}] \le \liminf_n \mathbb{E}[X_n \mid \mathcal{A}]$ a.s.
- (Dominated convergence) If $|X_n| \le Z$ with $Z \in L^1$ and $X_n \to X$ a.s., then $\mathbb{E}[X_n | \mathcal{A}] \to \mathbb{E}[X | \mathcal{A}]$ a.s.
- (Jensen inequality) If $\varphi : \mathbb{R} \to \mathbb{R}$ is convex and $\mathbb{E}[|\varphi(X)|] < \infty$, then $\mathbb{E}[\varphi(X) | \mathcal{A}] \ge \varphi(\mathbb{E}[X | \mathcal{A}])$.

Hao Wu (MIT)

Suppose that $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and that

- X, X_n are random variables on the probability space in L^1
- $\mathcal{A} \subset \mathcal{F}$ is a sub σ -algebra

Then we have the following.

- (Tower property) If \mathcal{B} is a sub- σ -algebra of \mathcal{A} , then $\mathbb{E}[\mathbb{E}[X | \mathcal{A}] | \mathcal{B}] = \mathbb{E}[X | \mathcal{B}]$ a.s.
- ("Taking out what is known") If Z is A-measurable and bounded, then E[XZ | A] = ZE[X | A] a.s.
- (Independence) If B is independent of σ(σ(X), A), then
 E[X | σ(A, B)] = E[X | A] a.s. In particular, if X is independent of
 B, then E[X | B] = E[X] a.s.

Suppose that $(X_n)_{n\geq 0}$ are i.i.d. with the same distribution as X with $\mathbb{E}[|X|] < \infty$. Let $S_n = X_1 + X_2 + \cdots + X_n$, and define

$$\mathcal{A}_n = \sigma(\mathcal{S}_n, \mathcal{S}_{n+1}, \ldots) = \sigma(\mathcal{S}_n, \mathcal{X}_{n+1}, \ldots).$$

Question : $\mathbb{E}[X_1 | \mathcal{A}_n]$? Answer : $\mathbb{E}[X_1 | \mathcal{A}_n] = S_n/n$.

イロト イヨト イヨト イヨト

Martingales

 $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space

A filtration $(\mathcal{F}_n)_{n\geq 0}$ is an increasing family of sub σ -algebras of \mathcal{F} . A sequence of random variables $X = (X_n)_{n\geq 0}$ is adapted to $(\mathcal{F}_n)_{n\geq 0}$ if X_n is measurable with respect to \mathcal{F}_n for all n.

Let $(X_n)_{n\geq 0}$ be a sequence of random variables. The natural filtration $(\mathcal{F}_n)_{n\geq 0}$ associated to $(X_n)_{n\geq 0}$ is given by

$$\mathcal{F}_n = \sigma(X_k, k \leq n).$$

We say that $(X_n)_{n>0}$ is integrable if X_n is integrable for all n.

Definition

Let $X = (X_n)_{n \ge 0}$ be an integrable process.

- *X* is a martingale if $\mathbb{E}[X_n | \mathcal{F}_m] = X_m \ a.s.$ for all $n \ge m$.
- X is a supermartingale if $\mathbb{E}[X_n | \mathcal{F}_m] \leq X_m \ a.s.$ for all $n \geq m$.
- *X* is a submartingale if $\mathbb{E}[X_n | \mathcal{F}_m] \ge X_m \ a.s.$ for all $n \ge m$.

Example 1 Let $(\xi_i)_{i\geq 1}$ be i.i.d with $\mathbb{E}[\xi_1] = 0$. Then $X_n = \sum_{1=1}^n \xi_i$ is a martingale.

Example 2 Let $(\xi_i)_{i\geq 1}$ be i.i.d with $\mathbb{E}[\xi_1] = 1$. Then $X_n = \prod_{i=1}^n \xi_i$ is a martingale.

Example 3 Consider biased gambler's ruin : at each step, the gambler gains one dollar with probability p and losses one dollar with probability (1 - p). Let X_n be the money in purse at time n.

- If p = 1/2, then (X_n) is a martingale.
- If p < 1/2, then (X_n) is a supermartingale.
- If p > 1/2, then (X_n) is a submartingale.

イロト 不得 トイヨト イヨト ヨー ろくの

18.445 Introduction to Stochastic Processes Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.