18.445 Introduction to Stochastic Processes

Lecture 15: Introduction to martingales

Hao Wu

MIT
08 April 2015

About the midterm : total=23

$$
\begin{gathered}
1 \text { in }[80,100], \quad 5 \text { in }[70,80), \quad 6 \text { in }[60,70) \\
4 \text { in }[40,60), \quad 7 \text { in }[10,40)
\end{gathered}
$$

Today's Goal :

- probability space
- conditional expectation
- introduction to martingales

Probability space

Definition

Ω : a set. A collection \mathcal{F} of subsets of Ω is called a σ-algebra on Ω if

- $\Omega \in \mathcal{F}$
- $F \in \mathcal{F} \Longrightarrow F^{c} \in \mathcal{F}$
- $F_{1}, F_{2}, \ldots \in \mathcal{F} \Longrightarrow \cup_{n} F_{n} \in \mathcal{F}$.

The pair (Ω, \mathcal{F}) is called a measurable space.
Definition
Let (Ω, \mathcal{F}) be a measurable space. A map $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$ is called a probability measure if

- $\mathbb{P}[\emptyset]=0, \mathbb{P}[\Omega]=1$
- it is countably additive : whenever $\left(F_{n}\right)_{n \geq 0}$ is a sequence of disjoint sets in Ω, then $\mathbb{P}\left[\cup_{n} F_{n}\right]=\sum_{n} \mathbb{P}\left[F_{n}\right]$.

Probability space

$(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space

- Ω : state space
- $\mathcal{F}: \sigma$-algebra
- \mathbb{P} : probability measure

Conditional expectation-motivation

- $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space
- X, Z two random variables
- elementary conditional probability :

$$
\mathbb{P}[X=x \mid Z=z]=\mathbb{P}[X=x, Z=z] / \mathbb{P}[Z=z]
$$

- elementary conditional expectation :

$$
\mathbb{E}[X \mid Z=z]=\sum_{x} x \mathbb{P}[X=x \mid Z=z]
$$

- $Y=\mathbb{E}[X \mid \sigma(Z)]$?
- Y is measurable with respect to $\sigma(Z)$
- $\mathbb{E}\left[Y 1_{Z=z}\right]=\mathbb{E}\left[X 1_{Z=z}\right]$

Conditional Expectation

- $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space
- X is a random variable on the probability space with $\mathbb{E}[|X|]<\infty$
- $\mathcal{A} \subset \mathcal{F}$ is a sub σ-algebra

Then there exists a random variable Y such that

- Y is \mathcal{A}-measurable with $\mathbb{E}[|Y|]<\infty$
- for any $A \in \mathcal{A}$, we have $\mathbb{E}\left[Y 1_{A}\right]=\mathbb{E}\left[X 1_{A}\right]$.

Moreover, if \tilde{Y} also satisfies the above two properties, then $\tilde{Y}=Y$ a.s.
A random variable Y with the above two properties is called the conditional expectation of X given \mathcal{A}, and we denote it by $\mathbb{E}[X \mid \mathcal{A}]$.
Remark :

- If $\mathcal{A}=\{\emptyset, \Omega\}$, then $\mathbb{E}[X \mid \mathcal{A}]=\mathbb{E}[X]$.
- If X is \mathcal{A}-measurable, then $\mathbb{E}[X \mid \mathcal{A}]=X$.
- If $Y=\mathbb{E}[X \mid \mathcal{A}]$, then $\mathbb{E}[Y]=\mathbb{E}[X]$

Conditional Expectation-Basic properties

Suppose that $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and that

- X, X_{n} are random variables on the probability space in L^{1}
- $\mathcal{A} \subset \mathcal{F}$ is a sub σ-algebra

Then we have the following.

- (Linearity) $\mathbb{E}\left[a_{1} X_{1}+a_{2} X_{2} \mid \mathcal{A}\right]=a_{1} \mathbb{E}\left[X_{1} \mid \mathcal{A}\right]+a_{2} \mathbb{E}\left[X_{2} \mid \mathcal{A}\right]$ for constants a_{1}, a_{2}.
- (Positivity) If $X \geq 0$ a.s., then $\mathbb{E}[X \mid \mathcal{A}] \geq 0$ a.s.
- (Monotone convergence) If $0 \leq X_{n} \uparrow X$ a.s. then $\mathbb{E}\left[X_{n} \mid \mathcal{A}\right] \uparrow \mathbb{E}[X \mid \mathcal{A}]$ a.s.
- (Fatou's Lemma) If $X_{n} \geq 0$, then $\mathbb{E}\left[\lim \inf _{n} X_{n} \mid \mathcal{A}\right] \leq \liminf _{n} \mathbb{E}\left[X_{n} \mid \mathcal{A}\right]$ a.s.
- (Dominated convergence) If $\left|X_{n}\right| \leq Z$ with $Z \in L^{1}$ and $X_{n} \rightarrow X$ a.s., then $\mathbb{E}\left[X_{n} \mid \mathcal{A}\right] \rightarrow \mathbb{E}[X \mid \mathcal{A}]$ a.s.
- (Jensen inequality) If $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is convex and $\mathbb{E}[|\varphi(X)|]<\infty$, then $\mathbb{E}[\varphi(X) \mid \mathcal{A}] \geq \varphi(\mathbb{E}[X \mid \mathcal{A}])$.

Conditional Expectation-Basic properties

Suppose that $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and that

- X, X_{n} are random variables on the probability space in L^{1}
- $\mathcal{A} \subset \mathcal{F}$ is a sub σ-algebra

Then we have the following.

- (Tower property) If \mathcal{B} is a sub- σ-algebra of \mathcal{A}, then $\mathbb{E}[\mathbb{E}[X \mid \mathcal{A}] \mid \mathcal{B}]=\mathbb{E}[X \mid \mathcal{B}]$ a.s.
- ("Taking out what is known") If Z is \mathcal{A}-measurable and bounded, then $\mathbb{E}[X Z \mid \mathcal{A}]=Z \mathbb{E}[X \mid \mathcal{A}]$ a.s.
- (Independence) If \mathcal{B} is independent of $\sigma(\sigma(X), \mathcal{A})$, then $\mathbb{E}[X \mid \sigma(\mathcal{A}, \mathcal{B})]=\mathbb{E}[X \mid \mathcal{A}]$ a.s. In particular, if X is independent of \mathcal{B}, then $\mathbb{E}[X \mid \mathcal{B}]=\mathbb{E}[X]$ a.s.

Conditional expectation-example

Suppose that $\left(X_{n}\right)_{n \geq 0}$ are i.i.d. with the same distribution as X with $\mathbb{E}[|X|]<\infty$. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$, and define

$$
\mathcal{A}_{n}=\sigma\left(S_{n}, S_{n+1}, \ldots\right)=\sigma\left(S_{n}, X_{n+1}, \ldots\right)
$$

Question : $\mathbb{E}\left[X_{1} \mid \mathcal{A}_{n}\right]$? Answer: $\mathbb{E}\left[X_{1} \mid \mathcal{A}_{n}\right]=S_{n} / n$.

Martingales

$(\Omega, \mathcal{F}, \mathbb{P})$ a probability space
A filtration $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ is an increasing family of sub σ-algebras of \mathcal{F}.
A sequence of random variables $X=\left(X_{n}\right)_{n \geq 0}$ is adapted to $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ if
X_{n} is measurable with respect to \mathcal{F}_{n} for all n.
Let $\left(X_{n}\right)_{n \geq 0}$ be a sequence of random variables.
The natural filtration $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ associated to $\left(X_{n}\right)_{n \geq 0}$ is given by

$$
\mathcal{F}_{n}=\sigma\left(X_{k}, k \leq n\right)
$$

We say that $\left(X_{n}\right)_{n \geq 0}$ is integrable if X_{n} is integrable for all n .

Definition

Let $X=\left(X_{n}\right)_{n \geq 0}$ be an integrable process.

- X is a martingale if $\mathbb{E}\left[X_{n} \mid \mathcal{F}_{m}\right]=X_{m}$ a.s. for all $n \geq m$.
- X is a supermartingale if $\mathbb{E}\left[X_{n} \mid \mathcal{F}_{m}\right] \leq X_{m}$ a.s. for all $n \geq m$.
- X is a submartingale if $\mathbb{E}\left[X_{n} \mid \mathcal{F}_{m}\right] \geq X_{m}$ a.s. for all $n \geq m$.

Examples

Example 1 Let $\left(\xi_{i}\right)_{i \geq 1}$ be i.i.d with $\mathbb{E}\left[\xi_{1}\right]=0$. Then $X_{n}=\sum_{1}^{n} \xi_{i}$ is a martingale.

Example 2 Let $\left(\xi_{i}\right)_{i \geq 1}$ be i.i.d with $\mathbb{E}\left[\xi_{1}\right]=1$. Then $X_{n}=\Pi_{1}^{n} \xi_{i}$ is a martingale.

Example 3 Consider biased gambler's ruin : at each step, the gambler gains one dollar with probability p and losses one dollar with probability $(1-p)$. Let X_{n} be the money in purse at time n.

- If $p=1 / 2$, then $\left(X_{n}\right)$ is a martingale.
- If $p<1 / 2$, then $\left(X_{n}\right)$ is a supermartingale.
- If $p>1 / 2$, then $\left(X_{n}\right)$ is a submartingale.

MIT OpenCourseWare
http://ocw.mit.edu

18.445 Introduction to Stochastic Processes

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

