18.445 Introduction to Stochastic Processes

Lecture 11: Summary on random walks on network

Hao Wu

MIT
18 March 2015

Effective Resistance

Consider a network ($G=(V, E),\{c(e): e \in E\}$).
Suppose that W is a voltage with source $a \in V$ and sink $z \in V$.
Let / be the corresponding current flow :
$I(\overrightarrow{x y})=(W(x)-W(y)) / r(x, y)$.
Define the effective resistance between a and z by

$$
R(a \leftrightarrow z)=\frac{W(a)-W(z)}{\|/ I\|} .
$$

Effective resistance and Escape probability

$$
\mathbb{P}_{a}\left[\tau_{z}<\tau_{a}^{+}\right]=\frac{1}{c(a) R(a \leftrightarrow z)} .
$$

Effective resistance and Green's function

$$
G_{T_{z}}(a, a)=c(a) R(a \leftrightarrow z) .
$$

Three operations

Define the effective resistance between a and z by

$$
R(a \leftrightarrow z)=\frac{W(a)-W(z)}{\|I\|}
$$

Three operations without changing the effective resistance
Parallel Law : Conductances in parallel add.
Series Law : Resistances in series add.
Gluing : Identify vertices with the same voltage.

Estimates on effective resistance

Effective resistance and energy of flows

$$
R(a \leftrightarrow z)=\inf \{\mathcal{E}(\theta): \theta \text { unit flow from } a \text { to } z\} .
$$

Corollaries

- If $r(e) \leq r^{\prime}(e)$ for all e, we have

$$
R(a \leftrightarrow z ; r) \leq R\left(a \leftrightarrow z ; r^{\prime}\right)
$$

- Upper bound : For any unit flow θ from a to z, we have

$$
R(a \leftrightarrow z) \leq \mathcal{E}(\theta)
$$

- Lower bound : Nash-William Inequality. $\left\{\Pi_{k}\right\}$ are disjoint edge-cut sets which separate a from z, then

$$
R(a \leftrightarrow z) \geq \sum_{k}\left(\sum_{e \in \Pi_{k}} c(e)\right)^{-1}
$$

Random walk on network

Consider a random walk on network $(G=(V, E),\{c(e): e \in E\})$.

- Transition matrix : $P(x, y)=c(x, y) / c(x)$
- It is reversible
- The stationary measure : $\pi(x)=c(x) / c_{G}$.
- The commute time is defined by

$$
\tau_{b a}=\min \left\{n \geq \tau_{b}: X_{n}=a\right\} .
$$

- Commute Time Identity

$$
\mathbb{E}_{\mathrm{a}}\left[\tau_{b a}\right]=c_{G} R(a \leftrightarrow b) .
$$

- Assume that the network is transitive, then

$$
\mathbb{E}_{a}\left[\tau_{b}\right]=\mathbb{E}_{b}\left[\tau_{a}\right] .
$$

In particular,

$$
2 \mathbb{E}_{\mathrm{a}}\left[\tau_{b}\right]=c_{G} R(a \leftrightarrow b) .
$$

Random walk on binary tree

A tree is a connected graph with no cycles.
A rooted tree has a distinguished vertex v_{0}, called the root.
The depth of a vertex v is its graph distance to the root.
A leaf is a vertex with degree one.
A rooted binary tree of depth k, denoted by T_{2}^{k}, is a tree with a root v_{0} such that

- v_{0} has degree 2.
- For $1 \leq j \leq k-1$, every vertex at distance j from the root has degree 3.
- The vertices at distance k from the root are leaves (they have degree 1).

Random walk on binary tree

- T_{k}^{2} is a network
- all edges have unit resistance
- there are $N=2^{k+1}-1$ vertices
- there are $N-1$ edges

Theorem
Consider the random walk $\left(X_{n}\right)_{n}$ on this network. Let B be the set of leaves. Define the commute time

$$
\tau_{B v_{0}}=\min \left\{n \geq \tau_{B}: X_{n}=v_{0} .\right\}
$$

Random walk on torus

A 2-dimensional torus:
$\mathbb{Z}_{N}^{2}=\mathbb{Z}_{N} \times \mathbb{Z}_{N}$. Two vertices $\vec{x}=\left(x^{1}, x^{2}\right)$ and $\vec{y}=\left(y^{1}, y^{2}\right)$ are neighbors if,
$\left\{\begin{array}{l}\text { either } x^{1}=y^{1}, x^{2} \equiv y^{2} \pm 1 \bmod N \\ \text { or } \quad x^{2}=y^{2}, x^{1} \equiv y^{1} \pm 1 \bmod N\end{array}\right.$

Image by MIT OpenCourseWare.
This is a network and assume that all edges have unit resistance.

Theorem

Let $k=|x-y| \geq 2$ on \mathbb{Z}_{N}^{2}. There exist constants $0<c<C<\infty$ such that

$$
c N^{2} \log k \leq \mathbb{E}_{x}\left[\tau_{y}\right] \leq C N^{2} \log k .
$$

Random walk on torus

Image by MIT OpenCourseWare.

MIT OpenCourseWare
http://ocw.mit.edu

18.445 Introduction to Stochastic Processes

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

