18.600 Midterm 1, Spring 2019 solutions

- 1. (20 points) A town has 2000 residents. An obscure film is playing in its only theater. Each resident decides independently whether to view the film, and each resident views the film with probability 1/1000. Let X be the number of people who view the film.
 - (a) Compute E[X]. Given an exact answer, not an approximation. **ANSWER:** X is binomial with n = 2000 and p = 1/1000, so E[X] = np = 2.
 - (b) Compute Var[X]. Give an exact answer, not an approximation. **ANSWER:** $Var(X) = np(1-p) = 2 \cdot 999/1000 = 1.998$ (which is approximately 2, for what it's worth)
 - (c) Compute $E[X^2]$. Give an exact answer, not an approximation. **ANSWER:** We know $1.998 = \text{Var}(X) = E(X^2) E(X)^2 = E(X^2) 4$. Hence $E(X^2) = 5.998$. Alternatively, write $X = \sum_{i=1}^{n} X_i$ where X_i is 1 if *i*th person shows, 0 otherwise. Then

$$E(X^2) = E(\sum_{i=1}^n X_i \sum_{j=1}^n X_j) = \sum_{i=1}^n \sum_{j=1}^n E[X_i X_j].$$

Note that $E[X_iX_j] = p$ if i = j and p^2 otherwise. Of the n^2 terms in the sum, we have n equal to p and $n^2 - n$ equal to p^2 . So answer is

$$np + (n^2 - n)p^2 = 2 + (4000000 - 2000)/1000000 = 2 + 3.998 = 5.998.$$

- (d) Use a Poisson random variable to approximate P(X=4). **ANSWER:** X should be approximately Poisson with $\lambda = E[X] = 2$. So $P(X=4) \approx e^{-\lambda} \lambda^k / k! = e^{-2} 2^4 / 4!$.
- 2.(10 points) Suppose that X is a Poisson random variable with parameter 2 and Y is a Poisson random variable with parameter 3.
 - (a) Compute the expectation E(3X + 4Y + 5). **ANSWER:** By linearity of expectation, and fact Poisson of parameter λ has expectation λ , the answer is 3E[X] + 4E[Y] + 5 = 6 + 12 + 5 = 23.
 - (b) Compute the variance Var(5X + 7). **ANSWER:** If a and b are constants, we have $Var(aX + b) = a^2Var(X)$. Poisson of parameter λ has variance λ so answer is 25Var(X) = 50.
- 3. (20 points) Alice, Bob, Carol, Dave, Eve, and Frank are gathered together for a night of pizza and dungeons and dragons. They order two large pizzas, each cut into 12 pieces, so there are 24 pieces altogether.
 - (a) How many ways are there to divide the 24 (indistinguishable) pieces among the six people? in other words, how many sequences a_1, a_2, \ldots, a_6 of non-negative integers satisfy $\sum_{i=1}^6 a_i = 24$? **ANSWER:** This is the stars and bars problem with n = 24 and k = 6, so answer is $\binom{29}{5}$.
 - (b) Eve proposes that, for the sake of fairness, only divisions in which each person gets at least one slice of pizza should be considered. How many sequences a_1, a_2, \ldots, a_6 of strictly positive integers satisfy $\sum_{i=1}^{6} a_i = 24$? **ANSWERS:** First each person is given one piece, and then it is stars and bars with n = 18 and k = 6, so answer is $\binom{23}{5}$.
 - (c) Each of the six players pulls out a fair twenty-sided die (containing the numbers $\{1, 2, ..., 20\}$) and rolls it. (The six rolls are independent of each other.) What is the probability that the sum of the numbers on the dice is exactly 24? **ANSWER:** We realize that in part (b) each person gets a number of pieces of pizza between 1 and 19, so the number of ways to assign each person a die value (with total sum being 24) is exactly the answer in (b). The total number of die roll sequences is 20^6 so answer is $\binom{23}{5}/20^6$.

- 4. (20 points) An a capella group with 15 members (8 women and 7 men) is organizing a holiday gift exchange. Each member writes his or her name on a piece of paper and puts it in a bowl. Then the pieces of paper are randomly distributed among the 15 people, with all 15! arrangements being equally likely. Each person is assigned to buy a gift for the individual on the paper that he or she chose.
 - (a) Compute the expected number of people who will be assigned to buy gifts for themselves. **ANSWER:** Let X_i be 1 if ith person gets own name, 0 otherwise. Then $E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = n \cdot 1/n = 1$.
 - (b) Compute the expected number of men who will be assigned to give gifts to women. **ANSWER:** Let X_i be 1 if *i*th man gives to woman, 0 otherwise. Then $E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = 7 \cdot 8/15 = 56/15$.
 - (c) Compute the probability that *every* man is assigned to give a gift to a woman. **ANSWER:** $\frac{8}{15} \cdot \frac{7}{14} \cdot \frac{6}{13} \cdot \frac{5}{12} \cdot \frac{4}{11} \cdot \frac{3}{10} \cdot \frac{2}{9} = \frac{8!8!}{15!}$
 - (d) Compute the probability that *every* individual is part of a cycle of length three (i.e., a group of people A, B, and C where A gives to B, B gives to C, and C gives to A). **ANSWER:** There are $\binom{15}{3,3,3,3,3}$ ways to divide 15 into a pile 1, pile 2, pile 3, pile 4, pile 5 with 3 per pile. If we don't care about ordering the piles, then we have $\binom{15}{3,3,3,3,3}/5!$ ways to divide 15 into the groups of 3. For each such division, there are two directions each cycle can go, so we end up with $2^5\binom{15}{3,3,3,3,3}/5!$, and the probability is $\frac{2^5\binom{15}{3,3,3,3,3}}{5!15!}$
- 5. (10 points) A standard deck of 52 cards has 13 cards of each suit (diamonds, hearts, clubs, or spades). The deck is randomly divided into 4 bridge hands with 13 cards each (with all divisions being equally likely). What is the probability that *each* of these hands contains cards from only a single suit? (So one hand is only hearts, one hand is only clubs, and so forth.) **ANSWER:** There are $\binom{52}{13,13,13,13}$ ways to give the players their hands, and 4! ways in which each player has a pure-suit hand. So answer is $4!/\binom{52}{13,13,13,13} = \frac{4!(13!)^4}{52!}$.

 6. (20 points) Alicia is writing a paper for her history class. Whenever she writes a paper, there is
- 6. (20 points) Alicia is writing a paper for her history class. Whenever she writes a paper, there is a .7 chance it will be brilliant and a .3 chance it will be mediocre. A professor reading a brilliant paper gives it an A with probability .9. A professor reading a mediocre paper gives it an A with probability .3. Let B be the event that that the paper is brilliant and let A be the event that it gets an A grade, so that our assumptions can be stated as P(B) = .7 and P(A|B) = .9 and $P(A|B^c) = .3$. Now compute the following:
 - (a) P(A) (i.e., overall likelihood she gets an A) **ANSWER:** $P(A) = P(BA) + P(B^cA) = P(B)P(A|B) + P(B^c)P(A|B^c) = .7 \cdot .9 + .3 \cdot .3 = .72$
 - (b) P(B|A) (i.e., likelihood paper is brilliant given it got an A) **ANSWER:** P(AB)/P(A) = .63/.72 = 7/8.
 - (c) $P(B|A^c)$ (i.e., likelihood paper is brilliant given it did not get an A) **ANSWER:** $P(A^cB)/P(A^c) = P(B)P(A^c|B)/P(A^c) = .7 \cdot .1/.28 = 1/4$

MIT OpenCourseWare https://ocw.mit.edu

18.600 Probability and Random Variables Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.