18.600: Lecture 5

Problems with all outcomes equally likely, including a famous hat problem

Scott Sheffield

MIT

Outline

Equal likelihood

A few problems

Hat problem

A few more problems

Outline

Equal likelihood

A few problems

Hat problem

A few more problems

Equal likelihood

▶ If a sample space S has n elements, and all of them are equally likely, then each one has to have probability 1/n

Equal likelihood

- ▶ If a sample space S has n elements, and all of them are equally likely, then each one has to have probability 1/n
- ▶ What is P(A) for a general set $A \subset S$?

Equal likelihood

- ▶ If a sample space *S* has *n* elements, and all of them are equally likely, then each one has to have probability 1/*n*
- ▶ What is P(A) for a general set $A \subset S$?
- ▶ Answer: |A|/|S|, where |A| is the number of elements in A.

Outline

Equal likelihood

A few problems

Hat problem

A few more problems

Outline

Equal likelihood

A few problems

Hat problem

A few more problems

▶ Roll two dice. What is the probability that their sum is three?

- ▶ Roll two dice. What is the probability that their sum is three?
- ► 2/36 = 1/18

- ▶ Roll two dice. What is the probability that their sum is three?
- ► 2/36 = 1/18
- ► Toss eight coins. What is the probability that exactly five of them are heads?

- ▶ Roll two dice. What is the probability that their sum is three?
- ► 2/36 = 1/18
- ► Toss eight coins. What is the probability that exactly five of them are heads?
- $(8)/2^8$

- ▶ Roll two dice. What is the probability that their sum is three?
- \triangleright 2/36 = 1/18
- ► Toss eight coins. What is the probability that exactly five of them are heads?
- $(8)/2^8$
- ▶ In a class of 100 people with cell phone numbers, what is the probability that nobody has a number ending in 37?

- ▶ Roll two dice. What is the probability that their sum is three?
- \triangleright 2/36 = 1/18
- ► Toss eight coins. What is the probability that exactly five of them are heads?
- $({8 \atop 5})/2^8$
- ▶ In a class of 100 people with cell phone numbers, what is the probability that nobody has a number ending in 37?
- $(99/100)^{100} \approx 1/e$

- ▶ Roll two dice. What is the probability that their sum is three?
- \triangleright 2/36 = 1/18
- ► Toss eight coins. What is the probability that exactly five of them are heads?
- $({8 \atop 5})/2^8$
- ▶ In a class of 100 people with cell phone numbers, what is the probability that nobody has a number ending in 37?
- $(99/100)^{100} \approx 1/e$
- ▶ Roll ten dice. What is the probability that a 6 appears on exactly five of the dice?

- Roll two dice. What is the probability that their sum is three?
- \triangleright 2/36 = 1/18
- ► Toss eight coins. What is the probability that exactly five of them are heads?
- $({8 \atop 5})/2^8$
- ▶ In a class of 100 people with cell phone numbers, what is the probability that nobody has a number ending in 37?
- $(99/100)^{100} \approx 1/e$
- ▶ Roll ten dice. What is the probability that a 6 appears on exactly five of the dice?
- $(^{10}_{5})5^{5}/6^{10}$

- ▶ Roll two dice. What is the probability that their sum is three?
- \triangleright 2/36 = 1/18
- ► Toss eight coins. What is the probability that exactly five of them are heads?
- $({8 \atop 5})/2^8$
- ▶ In a class of 100 people with cell phone numbers, what is the probability that nobody has a number ending in 37?
- $(99/100)^{100} \approx 1/e$
- ▶ Roll ten dice. What is the probability that a 6 appears on exactly five of the dice?
- $(^{10}_{5})5^{5}/6^{10}$
- ▶ In a room of 23 people, what is the probability that two of them have a birthday in common?

- ▶ Roll two dice. What is the probability that their sum is three?
- > 2/36 = 1/18
- Toss eight coins. What is the probability that exactly five of them are heads?
- $({8 \atop 5})/2^8$
- ▶ In a class of 100 people with cell phone numbers, what is the probability that nobody has a number ending in 37?
- $(99/100)^{100} \approx 1/e$
- ▶ Roll ten dice. What is the probability that a 6 appears on exactly five of the dice?
- $(^{10}_{5})5^{5}/6^{10}$
- In a room of 23 people, what is the probability that two of them have a birthday in common?
- ▶ $1 \prod_{i=0}^{22} \frac{365-i}{365}$

Outline

Equal likelihood

A few problems

Hat problem

A few more problems

Outline

Equal likelihood

A few problems

Hat problem

A few more problems

Recall the inclusion-exclusion identity

$$P(\bigcup_{i=1}^{n} E_{i}) = \sum_{i=1}^{n} P(E_{i}) - \sum_{i_{1} < i_{2}} P(E_{i_{1}} E_{i_{2}}) + \dots$$

$$+ (-1)^{(r+1)} \sum_{i_{1} < i_{2} < \dots < i_{r}} P(E_{i_{1}} E_{i_{2}} \dots E_{i_{r}})$$

$$= + \dots + (-1)^{n+1} P(E_{1} E_{2} \dots E_{n}).$$

Recall the inclusion-exclusion identity

$$P(\bigcup_{i=1}^{n} E_{i}) = \sum_{i=1}^{n} P(E_{i}) - \sum_{i_{1} < i_{2}} P(E_{i_{1}} E_{i_{2}}) + \dots$$

$$+ (-1)^{(r+1)} \sum_{i_{1} < i_{2} < \dots < i_{r}} P(E_{i_{1}} E_{i_{2}} \dots E_{i_{r}})$$

$$= + \dots + (-1)^{n+1} P(E_{1} E_{2} \dots E_{n}).$$

▶ The notation $\sum_{i_1 < i_2 < i_r}$ means a sum over all of the $\binom{n}{r}$ subsets of size r of the set $\{1, 2, ..., n\}$.

▶ *n* people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.

- ▶ *n* people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- ▶ Inclusion-exclusion. Let *E_i* be the event that *i*th person gets own hat.

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- ▶ Inclusion-exclusion. Let *E_i* be the event that *i*th person gets own hat.
- What is $P(E_{i_1}E_{i_2}...E_{i_r})$?

- ▶ *n* people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- ▶ Inclusion-exclusion. Let *E_i* be the event that *i*th person gets own hat.
- What is $P(E_{i_1}E_{i_2}...E_{i_r})$?
- Answer: $\frac{(n-r)!}{n!}$.

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- ▶ Inclusion-exclusion. Let *E_i* be the event that *i*th person gets own hat.
- What is $P(E_{i_1}E_{i_2}...E_{i_r})$?
- ► Answer: $\frac{(n-r)!}{n!}$.
- ► There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r}\frac{(n-r)!}{n!}$?

- ▶ *n* people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- ▶ Inclusion-exclusion. Let *E_i* be the event that *i*th person gets own hat.
- What is $P(E_{i_1}E_{i_2}...E_{i_r})$?
- Answer: $\frac{(n-r)!}{n!}$.
- ► There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r} \frac{(n-r)!}{n!}$?
- ► Answer: $\frac{1}{r!}$.

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- ▶ Inclusion-exclusion. Let *E_i* be the event that *i*th person gets own hat.
- What is $P(E_{i_1}E_{i_2}...E_{i_r})$?
- Answer: $\frac{(n-r)!}{n!}$.
- ► There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r} \frac{(n-r)!}{n!}$?
- ► Answer: $\frac{1}{r!}$.
- $P(\bigcup_{i=1}^n E_i) = 1 \frac{1}{2!} + \frac{1}{3!} \frac{1}{4!} + \dots \pm \frac{1}{n!}$

- ▶ *n* people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- ▶ Inclusion-exclusion. Let *E_i* be the event that *i*th person gets own hat.
- What is $P(E_{i_1}E_{i_2}...E_{i_r})$?
- ► Answer: $\frac{(n-r)!}{n!}$.
- ► There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r}\frac{(n-r)!}{n!}$?
- ► Answer: $\frac{1}{r!}$.
- $P(\bigcup_{i=1}^n E_i) = 1 \frac{1}{2!} + \frac{1}{3!} \frac{1}{4!} + \dots \pm \frac{1}{n!}$
- ▶ $1 P(\bigcup_{i=1}^{n} E_i) = 1 1 + \frac{1}{2!} \frac{1}{3!} + \frac{1}{4!} \dots \pm \frac{1}{n!} \approx 1/e \approx .36788$

Outline

Equal likelihood

A few problems

Hat problem

A few more problems

Outline

Equal likelihood

A few problems

Hat problem

A few more problems

▶ What's the probability of a full house in poker (i.e., in a five card hand, 2 have one value and three have another)?

- ▶ What's the probability of a full house in poker (i.e., in a five card hand, 2 have one value and three have another)?
- ► Answer 1:

ordered distinct-five-card sequences giving full house # ordered distinct-five-card sequences

- ▶ What's the probability of a full house in poker (i.e., in a five card hand, 2 have one value and three have another)?
- ► Answer 1:

ordered distinct-five-card sequences giving full house # ordered distinct-five-card sequences

► That's

$$\binom{5}{2} * 13 * 12 * (4 * 3 * 2) * (4 * 3) / (52 * 51 * 50 * 49 * 48) = 6/4165.$$

- ▶ What's the probability of a full house in poker (i.e., in a five card hand, 2 have one value and three have another)?
- ► Answer 1:

ordered distinct-five-card sequences giving full house # ordered distinct-five-card sequences

That's $\binom{5}{2} * 13 * 12 * (4 * 3 * 2) * (4 * 3) / (52 * 51 * 50 * 49 * 48) = 6/4165.$

Answer 2:

unordered distinct-five-card sets giving full house # unordered distinct-five-card sets

- ▶ What's the probability of a full house in poker (i.e., in a five card hand, 2 have one value and three have another)?
- ► Answer 1:

ordered distinct-five-card sequences giving full house # ordered distinct-five-card sequences

That's $\binom{5}{2} *13 *12 *(4 *3 *2) *(4 *3)/(52 *51 *50 *49 *48) = 6/4165.$

Answer 2:

unordered distinct-five-card sets giving full house # unordered distinct-five-card sets

► That's $13 * 12 * {4 \choose 3} * {4 \choose 2} / {52 \choose 5} = 6/4165$.

- ▶ What's the probability of a full house in poker (i.e., in a five card hand, 2 have one value and three have another)?
- ► Answer 1:

ordered distinct-five-card sequences giving full house # ordered distinct-five-card sequences

► That's $\binom{5}{2} *13 *12 *(4 *3 *2) *(4 *3)/(52 *51 *50 *49 *48) = 6/4165.$

Answer 2:

unordered distinct-five-card sets giving full house # unordered distinct-five-card sets

- ► That's $13 * 12 * {4 \choose 3} * {4 \choose 2} / {52 \choose 5} = 6/4165$.
- What is the probability of a two-pair hand in poker?

- ▶ What's the probability of a full house in poker (i.e., in a five card hand, 2 have one value and three have another)?
- ► Answer 1:

ordered distinct-five-card sequences giving full house # ordered distinct-five-card sequences

That's $\binom{5}{2} * 13 * 12 * (4 * 3 * 2) * (4 * 3) / (52 * 51 * 50 * 49 * 48) = 6/4165.$

Answer 2:

unordered distinct-five-card sets giving full house # unordered distinct-five-card sets

- ► That's $13 * 12 * {4 \choose 3} * {4 \choose 2} / {52 \choose 5} = 6/4165$.
- What is the probability of a two-pair hand in poker?
- ▶ Fix suit breakdown, then face values: $\binom{4}{2} \cdot 2 \cdot \binom{13}{2} \binom{13}{2} \cdot 13 / \binom{52}{5}$

- ▶ What's the probability of a full house in poker (i.e., in a five card hand, 2 have one value and three have another)?
- ► Answer 1:

ordered distinct-five-card sequences giving full house # ordered distinct-five-card sequences

► That's $\binom{5}{2} *13 *12 *(4 *3 *2) *(4 *3)/(52 *51 *50 *49 *48) = 6/4165.$

Answer 2:

unordered distinct-five-card sets giving full house # unordered distinct-five-card sets

- ► That's $13 * 12 * {4 \choose 3} * {4 \choose 2} / {52 \choose 5} = 6/4165$.
- What is the probability of a two-pair hand in poker?
- ► Fix suit breakdown, then face values: $\binom{4}{2} \cdot 2 \cdot \binom{13}{2} \binom{13}{2} \cdot 13 / \binom{52}{5}$
- ► How about bridge hand with 3 of one suit, 3 of one suit, 2 of one suit, 5 of another suit? 40

- ▶ What's the probability of a full house in poker (i.e., in a five card hand, 2 have one value and three have another)?
- ► Answer 1:

That's $\binom{5}{2} *13 *12 *(4 *3 *2) *(4 *3)/(52 *51 *50 *49 *48) = 6/4165.$

Answer 2:

- ► That's $13 * 12 * {4 \choose 3} * {4 \choose 2} / {52 \choose 5} = 6/4165$.
- ▶ What is the probability of a two-pair hand in poker?
- ► Fix suit breakdown, then face values: $\binom{4}{2} \cdot 2 \cdot \binom{13}{2} \binom{13}{2} \cdot 13 / \binom{52}{5}$
- ► How about bridge hand with 3 of one suit, 3 of one suit, 2 of one suit, 5 of another suit? 41
- $\binom{4}{2} \cdot 2 \cdot \binom{13}{3} \binom{13}{3} \binom{13}{2} \binom{13}{5} / \binom{52}{13}$

MIT OpenCourseWare https://ocw.mit.edu

18.600 Probability and Random Variables Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.