18.600: Lecture 5

Problems with all outcomes equally likely, including a famous hat problem

Scott Sheffield

MIT

Outline

Equal likelihood

A few problems

Hat problem

A few more problems

Outline

Equal likelihood

A few problems

Hat problem

A few more problems

Equal likelihood

- If a sample space S has n elements, and all of them are equally likely, then each one has to have probability $1 / n$

Equal likelihood

- If a sample space S has n elements, and all of them are equally likely, then each one has to have probability $1 / n$
- What is $P(A)$ for a general set $A \subset S$?

Equal likelihood

- If a sample space S has n elements, and all of them are equally likely, then each one has to have probability $1 / n$
- What is $P(A)$ for a general set $A \subset S$?
- Answer: $|A| /|S|$, where $|A|$ is the number of elements in A.

Outline

Equal likelihood

A few problems

Hat problem

A few more problems

Outline

Equal likelihood

A few problems

Hat problem

A few more problems

Problems

- Roll two dice. What is the probability that their sum is three?

Problems

- Roll two dice. What is the probability that their sum is three?
- $2 / 36=1 / 18$

Problems

- Roll two dice. What is the probability that their sum is three?
- $2 / 36=1 / 18$
- Toss eight coins. What is the probability that exactly five of them are heads?

Problems

- Roll two dice. What is the probability that their sum is three?
- $2 / 36=1 / 18$
- Toss eight coins. What is the probability that exactly five of them are heads?
- $\binom{8}{5} / 2^{8}$

Problems

- Roll two dice. What is the probability that their sum is three?
- $2 / 36=1 / 18$
- Toss eight coins. What is the probability that exactly five of them are heads?
- $\binom{8}{5} / 2^{8}$
- In a class of 100 people with cell phone numbers, what is the probability that nobody has a number ending in 37 ?

Problems

- Roll two dice. What is the probability that their sum is three?
- $2 / 36=1 / 18$
- Toss eight coins. What is the probability that exactly five of them are heads?
- $\binom{8}{5} / 2^{8}$
- In a class of 100 people with cell phone numbers, what is the probability that nobody has a number ending in 37 ?
- $(99 / 100)^{100} \approx 1 / e$

Problems

- Roll two dice. What is the probability that their sum is three?
- $2 / 36=1 / 18$
- Toss eight coins. What is the probability that exactly five of them are heads?
- $\binom{8}{5} / 2^{8}$
- In a class of 100 people with cell phone numbers, what is the probability that nobody has a number ending in 37 ?
- $(99 / 100)^{100} \approx 1 / e$
- Roll ten dice. What is the probability that a 6 appears on exactly five of the dice?

Problems

- Roll two dice. What is the probability that their sum is three?
- $2 / 36=1 / 18$
- Toss eight coins. What is the probability that exactly five of them are heads?
- $\binom{8}{5} / 2^{8}$
- In a class of 100 people with cell phone numbers, what is the probability that nobody has a number ending in 37 ?
- $(99 / 100)^{100} \approx 1 / e$
- Roll ten dice. What is the probability that a 6 appears on exactly five of the dice?
- $\binom{10}{5} 5^{5} / 6^{10}$

Problems

- Roll two dice. What is the probability that their sum is three?
- $2 / 36=1 / 18$
- Toss eight coins. What is the probability that exactly five of them are heads?
- $\binom{8}{5} / 2^{8}$
- In a class of 100 people with cell phone numbers, what is the probability that nobody has a number ending in 37 ?
- $(99 / 100)^{100} \approx 1 / e$
- Roll ten dice. What is the probability that a 6 appears on exactly five of the dice?
- $\binom{10}{5} 5^{5} / 6^{10}$
- In a room of 23 people, what is the probability that two of them have a birthday in common?

Problems

- Roll two dice. What is the probability that their sum is three?
- $2 / 36=1 / 18$
- Toss eight coins. What is the probability that exactly five of them are heads?
- $\binom{8}{5} / 2^{8}$
- In a class of 100 people with cell phone numbers, what is the probability that nobody has a number ending in 37 ?
- $(99 / 100)^{100} \approx 1 / e$
- Roll ten dice. What is the probability that a 6 appears on exactly five of the dice?
- $\binom{10}{5} 5^{5} / 6^{10}$
- In a room of 23 people, what is the probability that two of them have a birthday in common?
- 1 - $\prod_{i=0}^{22} \frac{365-i}{365}$

Outline

Equal likelihood

A few problems

Hat problem

A few more problems

Outline

Equal likelihood

A few problems

Hat problem

A few more problems

Recall the inclusion-exclusion identity

$$
\begin{aligned}
P\left(\cup_{i=1}^{n} E_{i}\right) & =\sum_{i=1}^{n} P\left(E_{i}\right)-\sum_{i_{1}<i_{2}} P\left(E_{i_{1}} E_{i_{2}}\right)+\ldots \\
& +(-1)^{(r+1)} \sum_{i_{1}<i_{2}<\ldots<i_{r}} P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{r}}\right) \\
& =+\ldots+(-1)^{n+1} P\left(E_{1} E_{2} \ldots E_{n}\right)
\end{aligned}
$$

Recall the inclusion-exclusion identity

$$
\begin{aligned}
P\left(\cup_{i=1}^{n} E_{i}\right) & =\sum_{i=1}^{n} P\left(E_{i}\right)-\sum_{i_{1}<i_{2}} P\left(E_{i_{1}} E_{i_{2}}\right)+\ldots \\
& +(-1)^{(r+1)} \sum_{i_{1}<i_{2}<\ldots<i_{r}} P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{r}}\right) \\
& =+\ldots+(-1)^{n+1} P\left(E_{1} E_{2} \ldots E_{n}\right)
\end{aligned}
$$

- The notation $\sum_{i_{1}<i_{2}<i_{r}}$ means a sum over all of the $\binom{n}{r}$ subsets of size r of the set $\{1,2, \ldots, n\}$.

Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.

Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_{i} be the event that i th person gets own hat.

Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_{i} be the event that i th person gets own hat.
- What is $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{r}}\right)$?

Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_{i} be the event that i th person gets own hat.
- What is $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{r}}\right)$?
- Answer: $\frac{(n-r)!}{n!}$.

Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_{i} be the event that i th person gets own hat.
- What is $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{r}}\right)$?
- Answer: $\frac{(n-r)!}{n!}$.
- There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r} \frac{(n-r)!}{n!}$?

Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_{i} be the event that i th person gets own hat.
- What is $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{r}}\right)$?
- Answer: $\frac{(n-r)!}{n!}$.
- There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r} \frac{(n-r)!}{n!}$?
- Answer: $\frac{1}{r!}$.

Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_{i} be the event that i th person gets own hat.
- What is $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{r}}\right)$?
- Answer: $\frac{(n-r)!}{n!}$.
- There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r} \frac{(n-r)!}{n!}$?
- Answer: $\frac{1}{r!}$.
- $P\left(\cup_{i=1}^{n} E_{i}\right)=1-\frac{1}{2!}+\frac{1}{3!}-\frac{1}{4!}+\ldots \pm \frac{1}{n!}$

Famous hat problem

- n people toss hats into a bin, randomly shuffle, return one hat to each person. Find probability nobody gets own hat.
- Inclusion-exclusion. Let E_{i} be the event that i th person gets own hat.
- What is $P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{r}}\right)$?
- Answer: $\frac{(n-r)!}{n!}$.
- There are $\binom{n}{r}$ terms like that in the inclusion exclusion sum. What is $\binom{n}{r} \frac{(n-r)!}{n!}$?
- Answer: $\frac{1}{r!}$.
- $P\left(\cup_{i=1}^{n} E_{i}\right)=1-\frac{1}{2!}+\frac{1}{3!}-\frac{1}{4!}+\ldots \pm \frac{1}{n!}$
- $1-P\left(\cup_{i=1}^{n} E_{i}\right)=1-1+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\ldots \pm \frac{1}{n!} \approx 1 / e \approx .36788$

Outline

Equal likelihood

A few problems

Hat problem

A few more problems

Outline

Equal likelihood
A few problems
Hat problem

A few more problems

Problems

- What's the probability of a full house in poker (i.e., in a five card hand, 2 have one value and three have another)?

Problems

- What's the probability of a full house in poker (i.e., in a five card hand, 2 have one value and three have another)?
- Answer 1:
\# ordered distinct-five-card sequences giving full house \# ordered distinct-five-card sequences

Problems

- What's the probability of a full house in poker (i.e., in a five card hand, 2 have one value and three have another)?
- Answer 1:
\# ordered distinct-five-card sequences giving full house \# ordered distinct-five-card sequences
- That's

$$
\binom{5}{2} * 13 * 12 *(4 * 3 * 2) *(4 * 3) /(52 * 51 * 50 * 49 * 48)=6 / 4165 .
$$

Problems

- What's the probability of a full house in poker (i.e., in a five card hand, 2 have one value and three have another)?
- Answer 1:
\# ordered distinct-five-card sequences giving full house \# ordered distinct-five-card sequences
- That's

$$
\binom{5}{2} * 13 * 12 *(4 * 3 * 2) *(4 * 3) /(52 * 51 * 50 * 49 * 48)=6 / 4165 .
$$

- Answer 2:
\# unordered distinct-five-card sets giving full house
\# unordered distinct-five-card sets

Problems

- What's the probability of a full house in poker (i.e., in a five card hand, 2 have one value and three have another)?
- Answer 1 :
\# ordered distinct-five-card sequences giving full house \# ordered distinct-five-card sequences
- That's

$$
\binom{5}{2} * 13 * 12 *(4 * 3 * 2) *(4 * 3) /(52 * 51 * 50 * 49 * 48)=6 / 4165
$$

- Answer 2 :
\# unordered distinct-five-card sets giving full house \# unordered distinct-five-card sets
- That's $13 * 12 *\binom{4}{3} *\binom{4}{2} /\binom{52}{5}=6 / 4165$.

Problems

- What's the probability of a full house in poker (i.e., in a five card hand, 2 have one value and three have another)?
- Answer 1 :
\# ordered distinct-five-card sequences giving full house \# ordered distinct-five-card sequences
- That's

$$
\binom{5}{2} * 13 * 12 *(4 * 3 * 2) *(4 * 3) /(52 * 51 * 50 * 49 * 48)=6 / 4165
$$

- Answer 2:
\# unordered distinct-five-card sets giving full house
\# unordered distinct-five-card sets
- That's $13 * 12 *\binom{4}{3} *\binom{4}{2} /\binom{52}{5}=6 / 4165$.
- What is the probability of a two-pair hand in poker?

Problems

- What's the probability of a full house in poker (i.e., in a five card hand, 2 have one value and three have another)?
- Answer 1 :
\# ordered distinct-five-card sequences giving full house \# ordered distinct-five-card sequences
- That's

$$
\binom{5}{2} * 13 * 12 *(4 * 3 * 2) *(4 * 3) /(52 * 51 * 50 * 49 * 48)=6 / 4165
$$

- Answer 2:
\# unordered distinct-five-card sets giving full house
\# unordered distinct-five-card sets
- That's $13 * 12 *\binom{4}{3} *\binom{4}{2} /\binom{52}{5}=6 / 4165$.
- What is the probability of a two-pair hand in poker?
- Fix suit breakdown, then face values: $\binom{4}{2} \cdot 2 \cdot\binom{13}{2}\binom{13}{2} \cdot 13 /\binom{52}{5}$

Problems

- What's the probability of a full house in poker (i.e., in a five card hand, 2 have one value and three have another)?
- Answer 1 :
\# ordered distinct-five-card sequences giving full house \# ordered distinct-five-card sequences
- That's $\binom{5}{2} * 13 * 12 *(4 * 3 * 2) *(4 * 3) /(52 * 51 * 50 * 49 * 48)=6 / 4165$.
- Answer 2:

> \# unordered distinct-five-card sets giving full house
\# unordered distinct-five-card sets

- That's $13 * 12 *\binom{4}{3} *\binom{4}{2} /\binom{52}{5}=6 / 4165$.
- What is the probability of a two-pair hand in poker?
- Fix suit breakdown, then face values: $\binom{4}{2} \cdot 2 \cdot\binom{13}{2}\binom{13}{2} \cdot 13 /\binom{52}{5}$
- How about bridge hand with 3 of one suit, 3 of one suit, 2 of one suit, 5 of another suit? ${ }^{40}$

Problems

- What's the probability of a full house in poker (i.e., in a five card hand, 2 have one value and three have another)?
- Answer 1 :
\# ordered distinct-five-card sequences giving full house \# ordered distinct-five-card sequences
- That's

$$
\binom{5}{2} * 13 * 12 *(4 * 3 * 2) *(4 * 3) /(52 * 51 * 50 * 49 * 48)=6 / 4165
$$

- Answer 2:

> \# unordered distinct-five-card sets giving full house
\# unordered distinct-five-card sets

- That's $13 * 12 *\binom{4}{3} *\binom{4}{2} /\binom{52}{5}=6 / 4165$.
- What is the probability of a two-pair hand in poker?
- Fix suit breakdown, then face values: $\binom{4}{2} \cdot 2 \cdot\binom{13}{2}\binom{13}{2} \cdot 13 /\binom{52}{5}$
- How about bridge hand with 3 of one suit, 3 of one suit, 2 of one suit, 5 of another suit? ${ }^{41}$
- $\binom{4}{2} \cdot 2 \cdot\binom{13}{3}\binom{13}{3}\binom{13}{2}\binom{13}{5} /\binom{52}{13}$

MIT OpenCourseWare https://ocw.mit.edu

18.600 Probability and Random Variables

Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

