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I The probabilities are approximately those of a binomial with
parameters (n, λ/n) when n is very large.

I Indeed,�
n

k

�
pk(1−p)n−k =

n(n − 1)(n − 2) . . . (n − k + 1)

k!
pk(1−p)n−k ≈

λk

k!
(1− p)n−k ≈ λk

k!
e−λ.

I General idea: if you have a large number of unlikely events
that are (mostly) independent of each other, and the expected
number that occur is λ, then the total number that occur
should be (approximately) a Poisson random variable with
parameter λ.

Properties from last time... 

I A Poisson random variable X with parameter λ satisfies 
λk 

P{X = k} = e−λ for integer k ≥ 0. k! 
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I A Poisson random variable X with parameter λ has
expectation λ and variance λ.

I Special case: if λ = 1, then P{X = k} = 1
k!e .

I Note how quickly this goes to zero, as a function of k.

I Example: number of royal flushes in a million five-card poker
hands is approximately Poisson with parameter
106/649739 ≈ 1.54.

I Example: if a country expects 2 plane crashes in a year, then
the total number might be approximately Poisson with
parameter λ = 2.

Properties from last time... 

I Many phenomena (number of phone calls or customers 
arriving in a given period, number of radioactive emissions in 
a given time period, number of major hurricanes in a given 
time period, etc.) can be modeled this way. 
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I Moreover, looking over five years of data, it seems that the
number of foreclosures per month follows a rate 1 Poisson
distribution.

I That is, roughly a 1/e fraction of months has 0 foreclosures, a
1/e fraction has 1, a 1/(2e) fraction has 2, a 1/(6e) fraction
has 3, and a 1/(24e) fraction has 4.

I Joe concludes that the probability of seeing 10 foreclosures
during a given month is only 1/(10!e). Probability to see 10
or more (an extreme tail event that would destroy the bank) isP∞

k=10 1/(k!e), less than one in million.

I Investors are impressed. Joe receives large bonus.

I But probably shouldn’t....

A cautionary tail 

I Example: Joe works for a bank and notices that his town sees 
an average of one mortgage foreclosure per month. 
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I Let’s encode this information with a function. We’d like a
random function N(t) that describe the number of events
that occur during the first t units of time. (This could be a
model for the number of plane crashes in first t years, or the
number of royal flushes in first 106t poker hands.)

I So N(t) is a random non-decreasing integer-valued
function of t with N(0) = 0.

I For each t, N(t) is a random variable, and the N(t) are
functions on the same sample space.

How should we define the Poisson process? 

I Whatever his faults, Joe was a good record keeper. He kept 
track of the precise times at which the foreclosures occurred 
over the whole five years (not just the total numbers of 
foreclosures). We could try this for other problems as well. 
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I 1. N(0) = 0.

I 2. Independence: Number of events (jumps of N) in disjoint
time intervals are independent.

I 3. Homogeneity: Prob. distribution of # events in interval
depends only on length. (Deduce: E [N(h)] = λh for some λ.)

I 4. Non-concurrence: P{N(h) ≥ 2} << P{N(h) = 1} when
h is small. Precisely:

I P{N(h) = 1} = λh + o(h). (Here f (h) = o(h) means
limh→0 f (h)/h = 0.)

I P{N(h) ≥ 2} = o(h).

I A random function N(t) with these properties is a Poisson
process with rate λ.

Poisson process axioms 

I Let’s back up and give a precise and minimal list of properties 
we want the random function N(t) to satisfy. 
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Poisson process axioms 

I Let’s back up and give a precise and minimal list of properties 
we want the random function N(t) to satisfy. 
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I We assumed P{N(h) = 1} = λh + o(h) and
P{N(h) ≥ 2} = o(h). Taken together, these imply that
P{N(h) = 0} = 1− λh + o(h).

I Fix λ and t. Probability of no events in interval of length t/n
is (1− λt/n) + o(1/n).

I Probability of no events in first n such intervals is about�
1− λt/n + o(1/n)

�n ≈ e−λt .

I Taking limit as n→∞, can show that probability of no event
in interval of length t is e−λt .

I P{N(t) = 0} = e−λt .

I Let T1 be the time of the first event. Then
P{T1 ≥ t} = e−λt . We say that T1 is an exponential
random variable with rate λ.

Consequences of axioms: time till first event 

I Can we work out the probability of no events before time t? 
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I Taking limit as n →∞, can show that probability of no event 
in interval of length t is e−λt . 

−λt I P{N(t) = 0} = e . 
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Consequences of axioms: time till first event 

I Can we work out the probability of no events before time t? 

I We assumed P{N(h) = 1} = λh + o(h) and 
P{N(h) ≥ 2} = o(h). Taken together, these imply that 
P{N(h) = 0} = 1 − λh + o(h). 

I Fix λ and t. Probability of no events in interval of length t/n 
is (1 − λt/n) + o(1/n). 

I Probability of no events in first n such intervals is about � �n 
1 − λt/n + o(1/n) ≈ e−λt . 

I Taking limit as n →∞, can show that probability of no event 
in interval of length t is e−λt . 

−λt I P{N(t) = 0} = e . 

I Let T1 be the time of the first event. Then 
−λt P{T1 ≥ t} = e . We say that T1 is an exponential 

random variable with rate λ. 
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I Then the T1,T2, . . . are independent of each other (informally
this means that observing some of the random variables Tk

gives you no information about the others). Each is an
exponential random variable with rate λ.

I This finally gives us a way to construct N(t). It is determined
by the sequence Tj of independent exponential random
variables.

I Axioms can be readily verified from this description.

Consequences of axioms: time till second, third events 

I Let T2 be time between first and second event. Generally, Tk 

is time between (k − 1)th and kth event. 
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I This finally gives us a way to construct N(t). It is determined
by the sequence Tj of independent exponential random
variables.

I Axioms can be readily verified from this description.

Consequences of axioms: time till second, third events 

I Let T2 be time between first and second event. Generally, Tk 

is time between (k − 1)th and kth event. 

I Then the T1, T2, . . . are independent of each other (informally 
this means that observing some of the random variables Tk 

gives you no information about the others). Each is an 
exponential random variable with rate λ. 
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I Axioms can be readily verified from this description.

Consequences of axioms: time till second, third events 

I Let T2 be time between first and second event. Generally, Tk 

is time between (k − 1)th and kth event. 

I Then the T1, T2, . . . are independent of each other (informally 
this means that observing some of the random variables Tk 

gives you no information about the others). Each is an 
exponential random variable with rate λ. 

I This finally gives us a way to construct N(t). It is determined 
by the sequence Tj of independent exponential random 
variables. 
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Consequences of axioms: time till second, third events 

I Let T2 be time between first and second event. Generally, Tk 

is time between (k − 1)th and kth event. 

I Then the T1, T2, . . . are independent of each other (informally 
this means that observing some of the random variables Tk 

gives you no information about the others). Each is an 
exponential random variable with rate λ. 

I This finally gives us a way to construct N(t). It is determined 
by the sequence Tj of independent exponential random 
variables. 

I Axioms can be readily verified from this description. 
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I One way to prove this: divide time into n intervals of length
t/n. In each, probability to see an event is p = λt/n+ o(1/n).

I Use binomial theorem to describe probability to see event in
exactly k intervals.

I Binomial formula:�n
k

�
pk(1− p)n−k = n(n−1)(n−2)...(n−k+1)

k! pk(1− p)n−k .

I This is approximately (λt)k

k! (1− p)n−k ≈ (λt)k

k! e−λt .

I Take n to infinity, and use fact that expected number of
intervals with two or more points tends to zero (thus
probability to see any intervals with two more points tends to
zero).

Back to Poisson distribution 

I Axioms should imply that P{N(t) = k} = e−λt (λt)k /k!. 
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I Use binomial theorem to describe probability to see event in
exactly k intervals.

I Binomial formula:�n
k

�
pk(1− p)n−k = n(n−1)(n−2)...(n−k+1)

k! pk(1− p)n−k .

I This is approximately (λt)k

k! (1− p)n−k ≈ (λt)k

k! e−λt .

I Take n to infinity, and use fact that expected number of
intervals with two or more points tends to zero (thus
probability to see any intervals with two more points tends to
zero).

Back to Poisson distribution 

I Axioms should imply that P{N(t) = k} = e−λt (λt)k /k!. 

I One way to prove this: divide time into n intervals of length 
t/n. In each, probability to see an event is p = λt/n + o(1/n). 
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I Binomial formula:�n
k

�
pk(1− p)n−k = n(n−1)(n−2)...(n−k+1)

k! pk(1− p)n−k .

I This is approximately (λt)k

k! (1− p)n−k ≈ (λt)k

k! e−λt .

I Take n to infinity, and use fact that expected number of
intervals with two or more points tends to zero (thus
probability to see any intervals with two more points tends to
zero).

Back to Poisson distribution 

I Axioms should imply that P{N(t) = k} = e−λt (λt)k /k!. 

I One way to prove this: divide time into n intervals of length 
t/n. In each, probability to see an event is p = λt/n + o(1/n). 

I Use binomial theorem to describe probability to see event in 
exactly k intervals. 
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I This is approximately (λt)k

k! (1− p)n−k ≈ (λt)k

k! e−λt .

I Take n to infinity, and use fact that expected number of
intervals with two or more points tends to zero (thus
probability to see any intervals with two more points tends to
zero).

Back to Poisson distribution 

I Axioms should imply that P{N(t) = k} = e−λt (λt)k /k!. 

I One way to prove this: divide time into n intervals of length 
t/n. In each, probability to see an event is p = λt/n + o(1/n). 

I Use binomial theorem to describe probability to see event in 
exactly k intervals. 

I Binomial formula: � � n n(n−1)(n−2)...(n−k+1) pk (1 − p)n−k = pk (1 − p)n−k . k k! 

52



I Take n to infinity, and use fact that expected number of
intervals with two or more points tends to zero (thus
probability to see any intervals with two more points tends to
zero).

Back to Poisson distribution 

I Axioms should imply that P{N(t) = k} = e−λt (λt)k /k!. 

I One way to prove this: divide time into n intervals of length 
t/n. In each, probability to see an event is p = λt/n + o(1/n). 

I Use binomial theorem to describe probability to see event in 
exactly k intervals. 

I Binomial formula: � � n n(n−1)(n−2)...(n−k+1) pk (1 − p)n−k = pk (1 − p)n−k . k k! 
(λt)k −λt I This is approximately (1 − p)n−k ≈ (λt)

k 
e . k! k! 
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Back to Poisson distribution 

I Axioms should imply that P{N(t) = k} = e−λt (λt)k /k!. 

I One way to prove this: divide time into n intervals of length 
t/n. In each, probability to see an event is p = λt/n + o(1/n). 

I Use binomial theorem to describe probability to see event in 
exactly k intervals. 

I Binomial formula: � � n n(n−1)(n−2)...(n−k+1) pk (1 − p)n−k = pk (1 − p)n−k . k k! 
(λt)k −λt I This is approximately (1 − p)n−k ≈ (λt)

k 
e . k! k! 

I Take n to infinity, and use fact that expected number of 
intervals with two or more points tends to zero (thus 
probability to see any intervals with two more points tends to 
zero). 
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I For each t > s ≥ 0, the value N(t)− N(s) describes the
number of events occurring in the time interval (s, t) and is
Poisson with rate (t − s)λ.

I The numbers of events occurring in disjoint intervals are
independent random variables.

I Let Tk be time elapsed, since the previous event, until the kth
event occurs. Then the Tk are independent random variables,
each of which is exponential with parameter λ.

Summary 

I We constructed a random function N(t) called a Poisson 
process of rate λ. 
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I The numbers of events occurring in disjoint intervals are
independent random variables.

I Let Tk be time elapsed, since the previous event, until the kth
event occurs. Then the Tk are independent random variables,
each of which is exponential with parameter λ.

Summary 

I We constructed a random function N(t) called a Poisson 
process of rate λ. 

I For each t > s ≥ 0, the value N(t) − N(s) describes the 
number of events occurring in the time interval (s, t) and is 
Poisson with rate (t − s)λ. 

56



I Let Tk be time elapsed, since the previous event, until the kth
event occurs. Then the Tk are independent random variables,
each of which is exponential with parameter λ.

Summary 

I We constructed a random function N(t) called a Poisson 
process of rate λ. 

I For each t > s ≥ 0, the value N(t) − N(s) describes the 
number of events occurring in the time interval (s, t) and is 
Poisson with rate (t − s)λ. 

I The numbers of events occurring in disjoint intervals are 
independent random variables. 
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Summary 

I We constructed a random function N(t) called a Poisson 
process of rate λ. 

I For each t > s ≥ 0, the value N(t) − N(s) describes the 
number of events occurring in the time interval (s, t) and is 
Poisson with rate (t − s)λ. 

I The numbers of events occurring in disjoint intervals are 
independent random variables. 

I Let Tk be time elapsed, since the previous event, until the kth 
event occurs. Then the Tk are independent random variables, 
each of which is exponential with parameter λ. 
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