18.600: Lecture 38

Review: practice problems

Scott Sheffield

MIT

Order statistics

- Let X be a uniformly distributed random variable on $[-1,1]$.

Order statistics

- Let X be a uniformly distributed random variable on $[-1,1]$.
- Compute the variance of X^{2}.

Order statistics

- Let X be a uniformly distributed random variable on $[-1,1]$.
- Compute the variance of X^{2}.
- If X_{1}, \ldots, X_{n} are independent copies of X, what is the probability density function for the smallest of the X_{i}

Order statistics answers

$$
\begin{gathered}
\operatorname{Var}\left[X^{2}\right]=E\left[X^{4}\right]-\left(E\left[X^{2}\right]\right)^{2} \\
=\int_{-1}^{1} \frac{1}{2} x^{4} d x-\left(\int_{-1}^{1} \frac{1}{2} x^{2} d x\right)^{2}=\frac{1}{5}-\frac{1}{9}=\frac{4}{45} .
\end{gathered}
$$

Order statistics answers

$$
\begin{gathered}
\operatorname{Var}\left[X^{2}\right]=E\left[X^{4}\right]-\left(E\left[X^{2}\right]\right)^{2} \\
=\int_{-1}^{1} \frac{1}{2} x^{4} d x-\left(\int_{-1}^{1} \frac{1}{2} x^{2} d x\right)^{2}=\frac{1}{5}-\frac{1}{9}=\frac{4}{45} .
\end{gathered}
$$

- Note that for $x \in[-1,1]$ we have

$$
P\{X>x\}=\int_{x}^{1} \frac{1}{2} d x=\frac{1-x}{2}
$$

If $x \in[-1,1]$, then

$$
\begin{gathered}
P\left\{\min \left\{X_{1}, \ldots, X_{n}\right\}>x\right\} \\
=P\left\{X_{1}>x, X_{2}>x, \ldots, X_{n}>x\right\}=\left(\frac{1-x}{2}\right)^{n} .
\end{gathered}
$$

So the density function is

$$
-\frac{\partial}{\partial x}\left(\frac{1-x}{2}\right)^{6}=\frac{n}{2}\left(\frac{1-x}{2}\right)^{n-1} .
$$

Moment generating functions

- Suppose that X_{i} are independent copies of a random variable X. Let $M_{X}(t)$ be the moment generating function for X. Compute the moment generating function for the average $\sum_{i=1}^{n} X_{i} / n$ in terms of $M_{X}(t)$ and n.

Moment generating functions answers

- Write $Y=\sum_{i=1}^{n} X_{i} / n$. Then

$$
M_{Y}(t)=E\left[e^{t Y}\right]=E\left[e^{t \sum_{i=1}^{n} X_{i} / n}\right]=\left(M_{X}(t / n)\right)^{n}
$$

Entropy

- Suppose X and Y are independent random variables, each equal to 1 with probability $1 / 3$ and equal to 2 with probability 2/3.
- Compute the entropy $H(X)$.

Entropy

- Suppose X and Y are independent random variables, each equal to 1 with probability $1 / 3$ and equal to 2 with probability 2/3.
- Compute the entropy $H(X)$.
- Compute $H(X+Y)$.

Entropy

- Suppose X and Y are independent random variables, each equal to 1 with probability $1 / 3$ and equal to 2 with probability 2/3.
- Compute the entropy $H(X)$.
- Compute $H(X+Y)$.
- Which is larger, $H(X+Y)$ or $H(X, Y)$? Would the answer to this question be the same for any discrete random variables X and Y ? Explain.

Entropy answers

$$
H(X)=\frac{1}{3}\left(-\log \frac{1}{3}\right)+\frac{2}{3}\left(-\log \frac{2}{3}\right) .
$$

Entropy answers

- $H(X)=\frac{1}{3}\left(-\log \frac{1}{3}\right)+\frac{2}{3}\left(-\log \frac{2}{3}\right)$.
- $H(X+Y)=\frac{1}{9}\left(-\log \frac{1}{9}\right)+\frac{4}{9}\left(-\log \frac{4}{9}\right)+\frac{4}{9}\left(-\log \frac{4}{9}\right)$

Entropy answers

- $H(X)=\frac{1}{3}\left(-\log \frac{1}{3}\right)+\frac{2}{3}\left(-\log \frac{2}{3}\right)$.
- $H(X+Y)=\frac{1}{9}\left(-\log \frac{1}{9}\right)+\frac{4}{9}\left(-\log \frac{4}{9}\right)+\frac{4}{9}\left(-\log \frac{4}{9}\right)$
- $H(X, Y)$ is larger, and we have $H(X, Y) \geq H(X+Y)$ for any X and Y. To see why, write $a(x, y)=P\{X=x, Y=y\}$ and $b(x, y)=P\{X+Y=x+y\}$. Then $a(x, y) \leq b(x, y)$ for any x and y, so $H(X, Y)=E[-\log a(x, y)] \geq E[-\log b(x, y)]=H(X+Y)$.

MIT OpenCourseWare https://ocw.mit.edu

18.600 Probability and Random Variables

Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

