18.440 Midterm 1, Spring 2014: 50 minutes, 100 points

1. (10 points) How many quintuples $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$ of non-negative integers satisfy $a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=100$? ANSWER: This the number of ways to make a list of " 100 stars and 4 bars", which is $\binom{104}{4}=\frac{104!}{4!100!}$.
2. (20 points) Thirty people are invited to a party. Each person accepts the invitation, independently of all others, with probability $1 / 3$. Let X be the number of accepted invitations. Compute the following:
(a) $E[X]$ ANSWER: X is binomial with $n=30$ and $p=1 / 3$, so the expectation is $n p=10$.
(b) $\operatorname{Var}[X]$ ANSWER: X is binomial with $n=30$ and $p=1 / 3$, so the variance is $n p q=n p(1-p)=20 / 3$.
(c) $E\left[X^{2}\right]$ ANSWER: $\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}$. Using previous two parts and solving gives $E\left[X^{2}\right]=20 / 3+100=320 / 3$.
(d) $E\left[X^{2}-4 X+5\right]$ ANSWER: By linearity of expectation, this is $E\left[X^{2}\right]-4 E[X]+5=320 / 3-40+5=215 / 3$.
3. (20 points) Bob has noticed that during every given minute, there is a $1 / 720$ chance that the Facebook page for his dry cleaning business will get a "like", independently of what happens during any other minute. Let L be the total number of likes that Bob receives during a 24 hour period.
(a) Compute $E[L]$ and $\operatorname{Var}[L]$. (Give exact answers, not approximate ones.) ANSWER: This is binomial with $n=60 \times 24$ and $p=1 / 720$. So $E[L]=n p=2$ and $\operatorname{Var}[L]=n p(1-p)=2 \frac{719}{720}$.
(b) Compute the probability that $L=0$. (Give an exact answer, not an approximate answer.) ANSWER: $(1-p)^{n}=\left(\frac{719}{720}\right)^{1440}$
(c) Bob is really hoping to get at least 2 more likes during the next 24 hours (because this would boost his cumulative total to triple digits). Use a Poisson random variable calculation to approximate the probability that $L \geq 2$. ANSWER: Note that L is approximately binomial with parameter $\lambda=E[L]=2$. Thus $P\{L \geq 2\}=1-P\{L=$ $1\}-P\{L=0\} \approx 1-e^{-\lambda} \lambda^{0} / 0!-e^{-\lambda} \lambda^{1} / 1!=1-3 e^{-2}=1-3 / e^{2}$
4. (10 points) Consider an infinite sequence of independent tosses of a coin that comes up heads with probability p. Compute (in terms of p) the
probability that the fifth head occurs on the tenth toss. ANSWER: This is the probability that exactly four of the first nine tosses are heads, and then the tenth toss is also heads. This comes to $\binom{9}{4} p^{5}(1-p)^{5}$.
5. (20 points) Let X be the number on a standard die roll (assuming values in $\{1,2,3,4,5,6\}$ with equal probability). Let Y be the number on an independent roll of the same die. Compute the following:
(a) The expectation $E\left[X^{2}\right]$. ANSWER: $(1+4+9+16+25+36) / 6=91 / 6$.
(b) The expectation $E[X Y]$. ANSWER: By independence of X and Y, we have $E[X Y]=E[X] E[Y]=(7 / 2)^{2}=49 / 4$.
(c) The covariance $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$. ANSWER: Because of independence, $\operatorname{Cov}(X, Y)=0$.
6. (20 points) Three hats fall out of their assigned bins and are randomly placed back in bins, one hat per bin (with all 3! reassignments being equally likely). Compute the following:
(a) The expected number of hats that end up in their own bins. ANSWER: Let X_{i} be 1 if i th hat ends up in own bin, zero otherwise. Then $X=X_{1}+X_{2}+X_{3}$ is total number of hats to end up in their own bins, and $E[X]=E\left[X_{1}\right]+E\left[X_{2}\right]+E\left[X_{3}\right]=3 \frac{1}{3}=1$.
(b) The probability that the third hat ends up in its own bin.

ANSWER: $1 / 3$
(b) The conditional probability that the third hat ends up in its own bin given that the first hat does not end up in its own bin. ANSWER: Let A be event third hat gets own bin, B event that first hat does not end up in its own bin. Then $P(A)=1 / 3$ and $P(B)=2 / 3$. There is only one permutation that assigns the third hat to its own bin and does not assign first hat to its own bin, so $P(A B)=1 / 6$. Thus $P(A \mid B)=P(A B) / P(B)=(1 / 6) /(2 / 3)=1 / 4$.

MIT OpenCourseWare
https://ocw.mit.edu

18.600 Probability and Random Variables

Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

