1. Binomial $(n, p): p_{X}(k)=\binom{n}{k} p^{k} q^{n-k}$ and $E[X]=n p$ and $\operatorname{Var}[X]=n p q$.
2. Poisson with mean $\lambda: p_{X}(k)=e^{-\lambda} \lambda^{k} / k!$ and $\operatorname{Var}[X]=\lambda$.
3. Geometric $p: p_{X}(k)=q^{k-1} p$ and $E[X]=1 / p$ and $\operatorname{Var}[X]=q / p^{2}$.
4. Negative binomial $(n, p): p_{X}(k)=\binom{k-1}{n-1} p^{n} q^{k-n}, E[X]=n / p, \operatorname{Var}[X]=n q / p^{2}$.

BASIC CONTINUOUS RANDOM VARIABLES X

1. Uniform on $[a, b]: f_{X}(x)=1 /(b-a)$ on $[a, b]$ and $E[X]=(a+b) / 2$ and $\operatorname{Var}[X]=(b-a)^{2} / 12$.
2. Normal with mean μ variance $\sigma^{2}: f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$.
3. Exponential with rate $\lambda: f_{X}(x)=\lambda e^{-\lambda x}($ on $[0, \infty))$ and $E[X]=1 / \lambda$ and $\operatorname{Var}[X]=1 / \lambda^{2}$.
4. Gamma $(n, \lambda): f_{X}(x)=\frac{\lambda}{\Gamma(n)} e^{-\lambda x}(\lambda x)^{n-1}$ (on $[0, \infty)$) and $E[X]=n / \lambda$ and $\operatorname{Var}[X]=n / \lambda^{2}$.
5. Cauchy: $f_{X}(x)=\frac{1}{\pi\left(1+x^{2}\right)}$ and both $E[X]$ and $\operatorname{Var}[X]$ are undefined.
6. Beta $(a, b): f_{X}(x)=\frac{x^{a-1}(1-x)^{b-1}}{B(a, b)}$ on $[0,1]$ and $E[X]=a /(a+b)$.

MOMENT GENERATING / CHARACTERISTIC FUNCTIONS

1. Discrete: $M_{X}(t)=E\left[e^{t X}\right]=\sum_{x} p_{X}(x) e^{t x}$ and $\phi_{X}(t)=E\left[e^{i t X}\right]=\sum_{x} p_{X}(x) e^{i t x}$.
2. Continuous: $M_{X}(t)=E\left[e^{t X}\right]=\int_{-\infty}^{\infty} f_{X}(x) e^{t x} d x$ and $\phi_{X}(t)=E\left[e^{i t X}\right]=\int_{-\infty}^{\infty} f_{X}(x) e^{i t x} d x$.
3. If X and Y are independent: $M_{X+Y}(t)=M_{X}(t) M_{Y}(t)$ and $\phi_{X+Y}(t)=\phi_{X}(t) \phi_{Y}(t)$.
4. Affine transformations: $M_{a X+b}(t)=e^{b t} M_{X}(a t)$ and $\phi_{a X+b}(t)=e^{i b t} \phi_{X}(a t)$
5. Some special cases: if X is normal $(0,1)$, complete-the-square trick gives $M_{X}(t)=e^{t^{2} / 2}$ and $\phi_{X}(t)=e^{-t^{2} / 2}$. If X is Poisson λ get "double exponential" $M_{X}(t)=e^{\lambda\left(e^{t}-1\right)}$ and $\phi_{X}(t)=e^{\lambda\left(e^{i t}-1\right)}$.

STORIES BEHIND BASIC DISCRETE RANDOM VARIABLES

1. Binomial (n, p) : sequence of n coins, each heads with probability p, have $\binom{n}{k}$ ways to choose a set of k to be heads; have $p^{k}(1-p)^{n-k}$ chance for each choice. If $n=1$ then $X \in\{0,1\}$ so $E[X]=E\left[X^{2}\right]=p$, and $\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}=p-p^{2}=p q$. Use expectation/variance additivity (for independent coins) for general n.
2. Poisson λ : $p_{X}(k)$ is $e^{-\lambda}$ times k th term in Taylor expansion of e^{λ}. Take n very large and let Y be \# heads in n tosses of coin with $p=\lambda / n$. Then $E[Y]=n p=\lambda$ and $\operatorname{Var}(Y)=n p q \approx n p=\lambda$. Law of Y tends to law of X as $n \rightarrow \infty$, so not surprising that $E[X]=\operatorname{Var}[X]=\lambda$.
3. Geometric p : Probability to have no heads in first $k-1$ tosses and heads in k th toss is $(1-p)^{k-1} p$. If you think about repeatedly a tossing coin forever, it makes intuitive sense that if you have (in expectation) p heads per toss, then you should need (in expectation) $1 / p$ tosses to get a heads. Variance formula requires calculation, but not surprising that $\operatorname{Var}(X) \approx 1 / p^{2}$ when p is small (when p is small X is kind like of exponential random variable with $p=\lambda$) and $\operatorname{Var}(X) \approx 0$ when q is small.
4. Negative binomial (n, p) : If you want nth heads to be on the k th toss then you have to have $n-1$ heads during first $k-1$ tosses, and then a heads on the k th toss. Expectations and variance are n times those for geometric (since were're summing n independent geometric random variables).

STORIES BEHIND BASIC CONTINUUM RANDOM VARIABLES

1. Uniform on $[a, b]$: Total integral is one, so density is $1 /(b-a)$ on $[a, b] . E[X]$ is midpoint $(a+b) / 2$. When $a=0$ and $b=1$, w know $E\left[X^{2}\right]=\int_{0}^{1} x^{2} d x=1 / 3$, so that $\operatorname{Var}(X)=1 / 3-1 / 4=12$. Stretching out random variable by $(b-a)$ multiplies variance by $(b-a)^{2}$.
2. Normal $\left(\mu, \sigma^{2}\right)$: when $\sigma=1$ and $\mu=0$ we have $f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$. The function $e^{-x^{2} / 2}$ is (up to multiplicative constant) its own Fourier transform. The fact that $\int_{-\infty}^{\infty} e^{-x^{2} / 2} d x=\sqrt{2 \pi}$ came from a cool and hopefully memorable trick involving passing to two dimensions and using polar coordinates. Once one knows the $\sigma=1, \mu=0$ case, general case comes from stretching/squashing the distribution by a factor of σ and then translating it by μ.
3. Exponential λ : Suppose $\lambda=1$. Then $f_{X}(x)=e^{-x}$ on $[0, \infty)$. Remember the integration by parts induction that proves $\int_{0}^{\infty} e^{-x} x^{n}=n!$. So $E[X]=1!=1$ and $E\left[X^{2}\right]=2!=2$ so that $\operatorname{Var}[X]=2-1=1$. We think of λ as rate ("number of buses per time unit") so replacing 1 by λ multiplies wait time by $1 / \lambda$, which leads to $E[X]=1 / \lambda$ and $\operatorname{Var}(X)=1 / \lambda^{2}$.
4. Gamma (n, λ) : Again, focus on the $\lambda=1$ case. Then f_{X} is just $e^{-x} x^{n-1}$ times the appropriate constant. Since X represents time until nth bus, expectation and variance should be n (by additivity of variance and expectation). If we switch to general λ, we stretch and squash f_{X} (and adjust expecation and variance accordingly).
5. Cauchy: If you remember that $1 /\left(1+x^{2}\right)$ is the derivative of arctangent, you can see why this corresponds to the spinning flashlight story and where the $1 / \pi$ factor comes from. Asymptotic $1 / x^{2}$ decay rate is why $\int_{-\infty}^{\infty} f_{X}(x) d x$ is finite but $\int_{-\infty}^{\infty} f_{X}(x) x d x$ and $\int_{-\infty}^{\infty} f_{X}(x) x^{2} d x$ diverge.
6. Beta $(a, b): f_{X}(x)$ is (up to a constant factor) the probability (as a function of x) that you see $a-1$ heads and $b-1$ tails when you toss $a+b-2 p$-coins with $p=x$. So makes sense that if Bayesian prior for p is uniform then Bayesian posterior (after seeing $a-1$ heads and $b-1$ tails) should be proportional to this. The constant $B(a, b)$ is by definition what makes the total integral one. Expectation formula (which you computed on pset) suggests rough intuition: if you have uniform prior for fraction of people who like new restaurant, and then ($a-1$) people say they do and $(b-1)$ say they don't, your revised expectation for fraction who like restaurant is $\frac{a}{a+b}$. (You might have guessed $\frac{(a-1)}{(a-1)+(b-1)}$, but that is not correct - and you can see why it would be wrong if $a-1=0$ or $b-1=0$.)

MIT OpenCourseWare
https://ocw.mit.edu

18.600 Probability and Random Variables

Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

