18.600: Lecture 4

Axioms of probability and inclusion-exclusion

Scott Sheffield

MIT

Outline

Axioms of probability

Consequences of axioms

Inclusion exclusion

Outline

Axioms of probability

Consequences of axioms

Inclusion exclusion

Axioms of probability

- $P(A) \in[0,1]$ for all $A \subset S$.

Axioms of probability

- $P(A) \in[0,1]$ for all $A \subset S$.
- $P(S)=1$.

Axioms of probability

- $P(A) \in[0,1]$ for all $A \subset S$.
- $P(S)=1$.
- Finite additivity: $P(A \cup B)=P(A)+P(B)$ if $A \cap B=\emptyset$.

Axioms of probability

- $P(A) \in[0,1]$ for all $A \subset S$.
- $P(S)=1$.
- Finite additivity: $P(A \cup B)=P(A)+P(B)$ if $A \cap B=\emptyset$.
- Countable additivity: $P\left(\cup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)$ if $E_{i} \cap E_{j}=\emptyset$ for each pair i and j.
- Neurological: When I think "it will rain tomorrow" the "truth-sensing" part of my brain exhibits 30 percent of its maximum electrical activity.
- Neurological: When I think "it will rain tomorrow" the "truth-sensing" part of my brain exhibits 30 percent of its maximum electrical activity.
- Frequentist: $P(A)$ is the fraction of times A occurred during the previous (large number of) times we ran the experiment.
- Neurological: When I think "it will rain tomorrow" the "truth-sensing" part of my brain exhibits 30 percent of its maximum electrical activity.
- Frequentist: $P(A)$ is the fraction of times A occurred during the previous (large number of) times we ran the experiment.
- Market preference ("risk neutral probability"): $P(A)$ is price of contract paying dollar if A occurs divided by price of contract paying dollar regardless.
- Neurological: When I think "it will rain tomorrow" the "truth-sensing" part of my brain exhibits 30 percent of its maximum electrical activity.
- Frequentist: $P(A)$ is the fraction of times A occurred during the previous (large number of) times we ran the experiment.
- Market preference ("risk neutral probability"): $P(A)$ is price of contract paying dollar if A occurs divided by price of contract paying dollar regardless.
- Personal belief: $P(A)$ is amount such that I'd be indifferent between contract paying 1 if A occurs and contract paying $P(A)$ no matter what.

Axiom breakdown

- What if personal belief function doesn't satisfy axioms?

Axiom breakdown

- What if personal belief function doesn't satisfy axioms?
- Consider an A-contract (pays 10 if candidate A wins election) a B-contract (pays 10 dollars if candidate B wins) and an A-or- B contract (pays 10 if either A or B wins).

Axiom breakdown

- What if personal belief function doesn't satisfy axioms?
- Consider an A-contract (pays 10 if candidate A wins election) a B-contract (pays 10 dollars if candidate B wins) and an A-or- B contract (pays 10 if either A or B wins).
- Friend: "I'd say A-contract is worth 1 dollar, B-contract is worth 1 dollar, A-or- B contract is worth 7 dollars."

Axiom breakdown

- What if personal belief function doesn't satisfy axioms?
- Consider an A-contract (pays 10 if candidate A wins election) a B-contract (pays 10 dollars if candidate B wins) and an A-or- B contract (pays 10 if either A or B wins).
- Friend: "I'd say A-contract is worth 1 dollar, B-contract is worth 1 dollar, A-or- B contract is worth 7 dollars."
- Amateur response: "Dude, that is, like, so messed up. Haven't you heard of the axioms of probability?"

Axiom breakdown

- What if personal belief function doesn't satisfy axioms?
- Consider an A-contract (pays 10 if candidate A wins election) a B-contract (pays 10 dollars if candidate B wins) and an A-or- B contract (pays 10 if either A or B wins).
- Friend: "I'd say A-contract is worth 1 dollar, B-contract is worth 1 dollar, A-or- B contract is worth 7 dollars."
- Amateur response: "Dude, that is, like, so messed up. Haven't you heard of the axioms of probability?"
- Cynical professional response: "I fully understand and respect your opinions. In fact, let's do some business. You sell me an A contract and a B contract for 1.50 each, and I sell you an A-or- B contract for 6.50 ."

Axiom breakdown

- What if personal belief function doesn't satisfy axioms?
- Consider an A-contract (pays 10 if candidate A wins election) a B-contract (pays 10 dollars if candidate B wins) and an A-or- B contract (pays 10 if either A or B wins).
- Friend: "I'd say A-contract is worth 1 dollar, B-contract is worth 1 dollar, A-or- B contract is worth 7 dollars."
- Amateur response: "Dude, that is, like, so messed up. Haven't you heard of the axioms of probability?"
- Cynical professional response: "I fully understand and respect your opinions. In fact, let's do some business. You sell me an A contract and a B contract for 1.50 each, and I sell you an A-or- B contract for 6.50 ."
- Friend: "Wow... you've beat by suggested price by 50 cents on each deal. Yes, sure! You're a great friend!"

Axiom breakdown

- What if personal belief function doesn't satisfy axioms?
- Consider an A-contract (pays 10 if candidate A wins election) a B-contract (pays 10 dollars if candidate B wins) and an A-or- B contract (pays 10 if either A or B wins).
- Friend: "I'd say A-contract is worth 1 dollar, B-contract is worth 1 dollar, A-or- B contract is worth 7 dollars."
- Amateur response: "Dude, that is, like, so messed up. Haven't you heard of the axioms of probability?"
- Cynical professional response: "I fully understand and respect your opinions. In fact, let's do some business. You sell me an A contract and a B contract for 1.50 each, and I sell you an A-or- B contract for 6.50 ."
- Friend: "Wow... you've beat by suggested price by 50 cents on each deal. Yes, sure! Yougre a great friend!"
- Axioms breakdowns are money-making opportunities.
- Neurological: When I think "it will rain tomorrow" the "truth-sensing" part of my brain exhibits 30 percent of its maximum electrical activity. Should have $P(A) \in[0,1]$, maybe $P(S)=1$, not necessarily $P(A \cup B)=P(A)+P(B)$ when $A \cap B=\emptyset$.
- Neurological: When I think "it will rain tomorrow" the "truth-sensing" part of my brain exhibits 30 percent of its maximum electrical activity. Should have $P(A) \in[0,1]$, maybe $P(S)=1$, not necessarily $P(A \cup B)=P(A)+P(B)$ when $A \cap B=\emptyset$.
- Frequentist: $P(A)$ is the fraction of times A occurred during the previous (large number of) times we ran the experiment. Seems to satisfy axioms...
- Neurological: When I think "it will rain tomorrow" the "truth-sensing" part of my brain exhibits 30 percent of its maximum electrical activity. Should have $P(A) \in[0,1]$, maybe $P(S)=1$, not necessarily $P(A \cup B)=P(A)+P(B)$ when $A \cap B=\emptyset$.
- Frequentist: $P(A)$ is the fraction of times A occurred during the previous (large number of) times we ran the experiment. Seems to satisfy axioms...
- Market preference ("risk neutral probability"): $P(A)$ is price of contract paying dollar if A occurs divided by price of contract paying dollar regardless. Seems to satisfy axioms, assuming no arbitrage, no bid-ask spread, complete market...
- Neurological: When I think "it will rain tomorrow" the "truth-sensing" part of my brain exhibits 30 percent of its maximum electrical activity. Should have $P(A) \in[0,1]$, maybe $P(S)=1$, not necessarily $P(A \cup B)=P(A)+P(B)$ when $A \cap B=\emptyset$.
- Frequentist: $P(A)$ is the fraction of times A occurred during the previous (large number of) times we ran the experiment. Seems to satisfy axioms...
- Market preference ("risk neutral probability"): $P(A)$ is price of contract paying dollar if A occurs divided by price of contract paying dollar regardless. Seems to satisfy axioms, assuming no arbitrage, no bid-ask spread, complete market...
- Personal belief: $P(A)$ is amount such that I'd be indifferent between contract paying 1 if A occurs and contract paying $P(A)$ no matter what. Seems to satisfy axioms with some notion of utility units, strong2assumption of "rationality"...

Outline

Axioms of probability

Consequences of axioms

Inclusion exclusion

Outline

Axioms of probability

Consequences of axioms

Inclusion exclusion

Intersection notation

- We will sometimes write $A B$ to denote the event $A \cap B$.

Consequences of axioms

- Can we show from the axioms that $P\left(A^{c}\right)=1-P(A)$?

Consequences of axioms

- Can we show from the axioms that $P\left(A^{c}\right)=1-P(A)$?
- Can we show from the axioms that if $A \subset B$ then $P(A) \leq P(B)$?

Consequences of axioms

- Can we show from the axioms that $P\left(A^{c}\right)=1-P(A)$?
- Can we show from the axioms that if $A \subset B$ then $P(A) \leq P(B)$?
- Can we show from the axioms that

$$
P(A \cup B)=P(A)+P(B)-P(A B) ?
$$

Consequences of axioms

- Can we show from the axioms that $P\left(A^{c}\right)=1-P(A)$?
- Can we show from the axioms that if $A \subset B$ then $P(A) \leq P(B)$?
- Can we show from the axioms that $P(A \cup B)=P(A)+P(B)-P(A B)$?
- Can we show from the axioms that $P(A B) \leq P(A)$?

Consequences of axioms

- Can we show from the axioms that $P\left(A^{c}\right)=1-P(A)$?
- Can we show from the axioms that if $A \subset B$ then $P(A) \leq P(B)$?
- Can we show from the axioms that $P(A \cup B)=P(A)+P(B)-P(A B)$?
- Can we show from the axioms that $P(A B) \leq P(A)$?
- Can we show from the axioms that if S contains finitely many elements x_{1}, \ldots, x_{k}, then the values $\left(P\left(\left\{x_{1}\right\}\right), P\left(\left\{x_{2}\right\}\right), \ldots, P\left(\left\{x_{k}\right\}\right)\right)$ determine the value of $P(A)$ for any $A \subset S$?

Consequences of axioms

- Can we show from the axioms that $P\left(A^{c}\right)=1-P(A)$?
- Can we show from the axioms that if $A \subset B$ then $P(A) \leq P(B)$?
- Can we show from the axioms that $P(A \cup B)=P(A)+P(B)-P(A B)$?
- Can we show from the axioms that $P(A B) \leq P(A)$?
- Can we show from the axioms that if S contains finitely many elements x_{1}, \ldots, x_{k}, then the values $\left(P\left(\left\{x_{1}\right\}\right), P\left(\left\{x_{2}\right\}\right), \ldots, P\left(\left\{x_{k}\right\}\right)\right)$ determine the value of $P(A)$ for any $A \subset S$?
- What k-tuples of values are consistent with the axioms?

Famous 1982 Tversky-Kahneman study (see wikipedia)

- People are told "Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations."

Famous 1982 Tversky-Kahneman study (see wikipedia)

- People are told "Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations."
- They are asked: Which is more probable?
- Linda is a bank teller.
- Linda is a bank teller and is active in the feminist movement.

Famous 1982 Tversky-Kahneman study (see wikipedia)

- People are told "Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations."
- They are asked: Which is more probable?
- Linda is a bank teller.
- Linda is a bank teller and is active in the feminist movement.
- 85 percent chose the second option.

Famous 1982 Tversky-Kahneman study (see wikipedia)

- People are told "Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations."
- They are asked: Which is more probable?
- Linda is a bank teller.
- Linda is a bank teller and is active in the feminist movement.
- 85 percent chose the second option.
- Could be correct using neurological/emotional definition. Or a "which story would you believe" interpretation (if witnesses offering more details are considered more credible).

Famous 1982 Tversky-Kahneman study (see wikipedia)

- People are told "Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations."
- They are asked: Which is more probable?
- Linda is a bank teller.
- Linda is a bank teller and is active in the feminist movement.
- 85 percent chose the second option.
- Could be correct using neurological/emotional definition. Or a "which story would you believe" interpretation (if witnesses offering more details are considered more credible).
- But axioms of probability imply that second option cannot be more likely than first.

Outline

Axioms of probability

Consequences of axioms

Inclusion exclusion

Outline

Axioms of probability

Consequences of axioms

Inclusion exclusion

Inclusion-exclusion identity

- Imagine we have n events, $E_{1}, E_{2}, \ldots, E_{n}$.

Inclusion-exclusion identity

- Imagine we have n events, $E_{1}, E_{2}, \ldots, E_{n}$.
- How do we go about computing something like $P\left(E_{1} \cup E_{2} \cup \ldots \cup E_{n}\right)$?

Inclusion-exclusion identity

- Imagine we have n events, $E_{1}, E_{2}, \ldots, E_{n}$.
- How do we go about computing something like $P\left(E_{1} \cup E_{2} \cup \ldots \cup E_{n}\right)$?
- It may be quite difficult, depending on the application.

Inclusion-exclusion identity

- Imagine we have n events, $E_{1}, E_{2}, \ldots, E_{n}$.
- How do we go about computing something like $P\left(E_{1} \cup E_{2} \cup \ldots \cup E_{n}\right)$?
- It may be quite difficult, depending on the application.
- There are some situations in which computing $P\left(E_{1} \cup E_{2} \cup \ldots \cup E_{n}\right)$ is a priori difficult, but it is relatively easy to compute probabilities of intersections of any collection of E_{i}. That is, we can easily compute quantities like $P\left(E_{1} E_{3} E_{7}\right)$ or $P\left(E_{2} E_{3} E_{6} E_{7} E_{8}\right)$.

Inclusion-exclusion identity

- Imagine we have n events, $E_{1}, E_{2}, \ldots, E_{n}$.
- How do we go about computing something like $P\left(E_{1} \cup E_{2} \cup \ldots \cup E_{n}\right)$?
- It may be quite difficult, depending on the application.
- There are some situations in which computing $P\left(E_{1} \cup E_{2} \cup \ldots \cup E_{n}\right)$ is a priori difficult, but it is relatively easy to compute probabilities of intersections of any collection of E_{i}. That is, we can easily compute quantities like $P\left(E_{1} E_{3} E_{7}\right)$ or $P\left(E_{2} E_{3} E_{6} E_{7} E_{8}\right)$.
- In these situations, the inclusion-exclusion rule helps us compute unions. It gives us a way to express $P\left(E_{1} \cup E_{2} \cup \ldots \cup E_{n}\right)$ in terms of these intersection probabilities.

Inclusion-exclusion identity

- Can we show from the axioms that $P(A \cup B)=P(A)+P(B)-P(A B)$?

Inclusion-exclusion identity

- Can we show from the axioms that

$$
P(A \cup B)=P(A)+P(B)-P(A B) ?
$$

- How about $P(E \cup F \cup G)=$

$$
P(E)+P(F)+P(G)-P(E F)-P(E G)-P(F G)+P(E F G) ?
$$

Inclusion-exclusion identity

- Can we show from the axioms that

$$
P(A \cup B)=P(A)+P(B)-P(A B) ?
$$

- How about $P(E \cup F \cup G)=$

$$
P(E)+P(F)+P(G)-P(E F)-P(E G)-P(F G)+P(E F G) ?
$$

- More generally,

$$
\begin{aligned}
P\left(\cup_{i=1}^{n} E_{i}\right) & =\sum_{i=1}^{n} P\left(E_{i}\right)-\sum_{i_{1}<i_{2}} P\left(E_{i_{1}} E_{i_{2}}\right)+\ldots \\
& +(-1)^{(r+1)} \sum_{i_{1}<i_{i}<\ldots<i_{r}} P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{r}}\right) \\
& +\ldots+(-1)^{n+1} P\left(E_{1} E_{2} \ldots E_{n}\right) .
\end{aligned}
$$

Inclusion-exclusion identity

- Can we show from the axioms that

$$
P(A \cup B)=P(A)+P(B)-P(A B) ?
$$

- How about $P(E \cup F \cup G)=$

$$
P(E)+P(F)+P(G)-P(E F)-P(E G)-P(F G)+P(E F G) ?
$$

- More generally,

$$
\begin{aligned}
P\left(\cup_{i=1}^{n} E_{i}\right) & =\sum_{i=1}^{n} P\left(E_{i}\right)-\sum_{i_{1}<i_{2}} P\left(E_{i_{1}} E_{i_{2}}\right)+\ldots \\
& +(-1)^{(r+1)} \sum_{i_{1}<i_{2}<\ldots<i_{r}} P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{r}}\right) \\
& +\ldots+(-1)^{n+1} P\left(E_{1} E_{2} \ldots E_{n}\right)
\end{aligned}
$$

- The notation $\sum_{i_{1}<i_{2}<\ldots<i_{r}}$ means a sum over all of the $\binom{n}{r}$ subsets of size r of the set $\{1,2, \ldots, n\}$.

Inclusion-exclusion proof idea

- Consider a region of the Venn diagram contained in exactly $m>0$ subsets. For example, if $m=3$ and $n=8$ we could consider the region $E_{1} E_{2} E_{3}^{c} E_{4}^{c} E_{5} E_{6}^{c} E_{7}^{c} E_{8}^{c}$.

Inclusion-exclusion proof idea

- Consider a region of the Venn diagram contained in exactly $m>0$ subsets. For example, if $m=3$ and $n=8$ we could consider the region $E_{1} E_{2} E_{3}^{c} E_{4}^{c} E_{5} E_{6}^{c} E_{7}^{c} E_{8}^{c}$.
- This region is contained in three single intersections (E_{1}, E_{2}, and E_{5}). It's contained in 3 double-intersections $\left(E_{1} E_{2}, E_{1} E_{5}\right.$, and $E_{2} E_{5}$). It's contained in only 1 triple-intersection $\left(E_{1} E_{2} E_{5}\right)$.

Inclusion-exclusion proof idea

- Consider a region of the Venn diagram contained in exactly $m>0$ subsets. For example, if $m=3$ and $n=8$ we could consider the region $E_{1} E_{2} E_{3}^{c} E_{4}^{c} E_{5} E_{6}^{c} E_{7}^{c} E_{8}^{c}$.
- This region is contained in three single intersections (E_{1}, E_{2}, and E_{5}). It's contained in 3 double-intersections $\left(E_{1} E_{2}, E_{1} E_{5}\right.$, and $E_{2} E_{5}$). It's contained in only 1 triple-intersection $\left(E_{1} E_{2} E_{5}\right)$.
- It is counted $\binom{m}{1}-\binom{m}{2}+\binom{m}{3}+\ldots \pm\binom{ m}{m}$ times in the inclusion exclusion sum.

Inclusion-exclusion proof idea

- Consider a region of the Venn diagram contained in exactly $m>0$ subsets. For example, if $m=3$ and $n=8$ we could consider the region $E_{1} E_{2} E_{3}^{c} E_{4}^{c} E_{5} E_{6}^{c} E_{7}^{c} E_{8}^{c}$.
- This region is contained in three single intersections (E_{1}, E_{2}, and E_{5}). It's contained in 3 double-intersections $\left(E_{1} E_{2}, E_{1} E_{5}\right.$, and $E_{2} E_{5}$). It's contained in only 1 triple-intersection $\left(E_{1} E_{2} E_{5}\right)$.
- It is counted $\binom{m}{1}-\binom{m}{2}+\binom{m}{3}+\ldots \pm\binom{ m}{m}$ times in the inclusion exclusion sum.
- How many is that?

Inclusion-exclusion proof idea

- Consider a region of the Venn diagram contained in exactly $m>0$ subsets. For example, if $m=3$ and $n=8$ we could consider the region $E_{1} E_{2} E_{3}^{c} E_{4}^{c} E_{5} E_{6}^{c} E_{7}^{c} E_{8}^{c}$.
- This region is contained in three single intersections (E_{1}, E_{2}, and E_{5}). It's contained in 3 double-intersections $\left(E_{1} E_{2}, E_{1} E_{5}\right.$, and $E_{2} E_{5}$). It's contained in only 1 triple-intersection $\left(E_{1} E_{2} E_{5}\right)$.
- It is counted $\binom{m}{1}-\binom{m}{2}+\binom{m}{3}+\ldots \pm\binom{ m}{m}$ times in the inclusion exclusion sum.
- How many is that?
- Answer: 1. (Follows from binomial expansion of $(1-1)^{m}$.)

Inclusion-exclusion proof idea

- Consider a region of the Venn diagram contained in exactly $m>0$ subsets. For example, if $m=3$ and $n=8$ we could consider the region $E_{1} E_{2} E_{3}^{c} E_{4}^{c} E_{5} E_{6}^{c} E_{7}^{c} E_{8}^{c}$.
- This region is contained in three single intersections (E_{1}, E_{2}, and E_{5}). It's contained in 3 double-intersections $\left(E_{1} E_{2}, E_{1} E_{5}\right.$, and $E_{2} E_{5}$). It's contained in only 1 triple-intersection $\left(E_{1} E_{2} E_{5}\right)$.
- It is counted $\binom{m}{1}-\binom{m}{2}+\binom{m}{3}+\ldots \pm\binom{ m}{m}$ times in the inclusion exclusion sum.
- How many is that?
- Answer: 1. (Follows from binomial expansion of $(1-1)^{m}$.)
- Thus each region in $E_{1} \cup \ldots \cup E_{n}$ is counted exactly once in the inclusion exclusion sum, 5 which implies the identity.

MIT OpenCourseWare https://ocw.mit.edu

18.600 Probability and Random Variables

Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

