Fall 2012 18.440 Final Exam: 100 points
Carefully and clearly show your work on each problem (without writing anything that is technically not true) and put a box around each of your final computations.

1. (10 points)) Lisa's truck has	three states:	broken (in	Lisa's posse	ssion),
working (in I	Lisa's possession),	and in the sh	op. Denote	these state	s B, W,
and S.					

- (i) Each morning the truck starts out B, it has a 1/2 chance of staying B and a 1/2 chance of switching to S by the next morning.
- (ii) Each morning the truck starts out W, it has 9/10 chance of staying W, and a 1/10 chance of switching to B by the next morning.
- (iii) Each morning the truck starts out S, it has a 1/2 chance of staying S and a 1/2 chance of switching to W by the next morning.

Answer the following

	((a)	Write the three-	by-three	Markov	transition	matrix	for this	s problem.
--	---	-----	------------------	----------	--------	------------	--------	----------	------------

(b) If the truck starts out W on one morning, what is the probability that it will start out B two days later?

(c) Over the long term, what fraction of mornings does the truck start out in each of the three states, B, S, and W?

- 2. (10 points) Suppose that X_1, X_2, X_3, \ldots is an infinite sequence of independent random variables which are each equal to 1 with probability 1/2 and -1 with probability 1/2. Write $Y_n = \sum_{i=1}^n X_i$. Answer the following:
 - (a) What is the probability that Y_n reaches 10 before the first time that it reaches -30?

(b) In which of the cases below is the sequence Z_n a martingale? (Just circle the corresponding letters.)

(i)
$$Z_n = X_n + Y_n$$

(ii)
$$Z_n = \prod_{i=1}^n (2X_i + 1)$$

(iii)
$$Z_n = \prod_{i=1}^n (-X_i + 1)$$

(iv)
$$Z_n = \sum_{i=1}^n Y_i$$

(iv)
$$Z_n = \sum_{i=1}^n Y_i$$

(v) $Z_n = \sum_{i=2}^n X_i X_{i-1}$

- 3. (10 points) Ten people throw their hats into a box and then randomly redistribute the hats among themselves (each person getting one hat, all 10! permutations equally likely). Let N be the number of people who get their own hats back. Compute the following:
 - (a) $E[N^2]$

(b) P(N = 8)

4. (10 points) When Harry's cell phone is on, the times when he receives
new text messages form a Poisson process with parameter $\lambda_T=3/\text{minute}$.
The times at which he receives new email messages form an independent
Poisson process with parameter $\lambda_E = 1/\text{minute}$. He receives personal
messages on Facebook as an independent Poisson process with rate
$\lambda_F = 2/\text{minute}.$

(a)	After catching up on existing messages one morning, Harry begins to
	wait for new messages to arrive. Let X be the amount of time (in
	minutes) that Harry has to wait to receive his first text message.
	Write down the probability density function for X .

(b) Compute the probability that Harry receives 10 new messages total (including email, text, and Facebook) during his first two minutes of waiting.

(c) Let Y be the amount of time elapsed before the third email message. Compute $\mathrm{Var}(Y).$

(d) What is the probability that Harry receives no messages of any kind during his first five minutes of waiting?

5. (10 points) Suppose that X and Y have a joint density function f given by

$$f(x,y) = \begin{cases} 1/\pi & x^2 + y^2 < 1\\ 0 & x^2 + y^2 \ge 1 \end{cases}.$$

(a) Compute the probability density function f_X for X.

(b) Express $E[\sin(XY)]$ as a double integral. (You don't have to explicitly evaluate the integral.)

6. (10 points) Let X be the number on a standard die roll (i.e., each of $\{1,2,3,4,5,6\}$ is equally likely) and Y the number on an independent standard die roll. Write Z=X+Y.

(a) Compute the conditional probability P[X=6|Z=8].

(b) Compute the conditional expectation E[Y|Z] as a function of Z (for $Z \in \{2,3,4,\ldots,12\}$).

- 7. (10 points) Suppose that X_i are i.i.d. random variables, each of which assumes a value in $\{-1,0,1\}$, each with probability 1/3.
 - (a) Compute the moment generating function for X_1 .

(b) Compute the moment generating function for the sum $\sum_{i=1}^{n} X_i$.

- 8. (10 points) Let X and Y be independent random variables. Suppose X takes values in $\{1,2\}$ each with probability 1/2 and Y takes values in $\{1,2,3,4\}$ each with probability 1/4. Write Z=X+Y.
 - (a) Compute the entropies H(X) and H(Y).

(b) Compute H(X, Z).

(c) Compute H(X + Y).

- 9. (10 points) Let X be a normal random variable with mean 0 and variance 1.
 - (a) Compute $\mathbb{E}[e^X]$.

(b) Compute $\mathbb{E}[e^X 1_{X>0}]$.

(c) Compute $\mathbb{E}[X^2 + 2X - 5]$.

- 10. (10 points) Let X be uniformly distributed random variable on [0,1].
 - (a) Compute the variance of X.

(b) Compute the variance of 3X + 5.

(c) If X_1, \ldots, X_n are independent copies of X, and $Z = \max\{X_1, X_2, \ldots, X_n\}$, then what is the cumulative distribution function F_Z ?

MIT OpenCourseWare https://ocw.mit.edu

18.600 Probability and Random Variables Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.