18.600: Lecture 30

Central limit theorem

Scott Sheffield

MIT

Outline

Central limit theorem

Proving the central limit theorem

Outline

Central limit theorem

Proving the central limit theorem

Recall: DeMoivre-Laplace limit theorem

- Let X_{i} be an i.i.d. sequence of random variables. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.

Recall: DeMoivre-Laplace limit theorem

- Let X_{i} be an i.i.d. sequence of random variables. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.
- Suppose each X_{i} is 1 with probability p and 0 with probability $q=1-p$.

Recall: DeMoivre-Laplace limit theorem

- Let X_{i} be an i.i.d. sequence of random variables. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.
- Suppose each X_{i} is 1 with probability p and 0 with probability $q=1-p$.
- DeMoivre-Laplace limit theorem:

$$
\lim _{n \rightarrow \infty} P\left\{a \leq \frac{S_{n}-n p}{\sqrt{n p q}} \leq b\right\} \rightarrow \Phi(b)-\Phi(a)
$$

Recall: DeMoivre-Laplace limit theorem

- Let X_{i} be an i.i.d. sequence of random variables. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.
- Suppose each X_{i} is 1 with probability p and 0 with probability $q=1-p$.
- DeMoivre-Laplace limit theorem:

$$
\lim _{n \rightarrow \infty} P\left\{a \leq \frac{S_{n}-n p}{\sqrt{n p q}} \leq b\right\} \rightarrow \Phi(b)-\Phi(a)
$$

- Here $\Phi(b)-\Phi(a)=P\{a \leq Z \leq b\}$ when Z is a standard normal random variable.

Recall: DeMoivre-Laplace limit theorem

- Let X_{i} be an i.i.d. sequence of random variables. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.
- Suppose each X_{i} is 1 with probability p and 0 with probability $q=1-p$.
- DeMoivre-Laplace limit theorem:

$$
\lim _{n \rightarrow \infty} P\left\{a \leq \frac{S_{n}-n p}{\sqrt{n p q}} \leq b\right\} \rightarrow \Phi(b)-\Phi(a)
$$

- Here $\Phi(b)-\Phi(a)=P\{a \leq Z \leq b\}$ when Z is a standard normal random variable.
- $\frac{S_{n}-n p}{\sqrt{n p q}}$ describes "number of standard deviations that S_{n} is above or below its mean".

Recall: DeMoivre-Laplace limit theorem

- Let X_{i} be an i.i.d. sequence of random variables. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.
- Suppose each X_{i} is 1 with probability p and 0 with probability $q=1-p$.
- DeMoivre-Laplace limit theorem:

$$
\lim _{n \rightarrow \infty} P\left\{a \leq \frac{S_{n}-n p}{\sqrt{n p q}} \leq b\right\} \rightarrow \Phi(b)-\Phi(a)
$$

- Here $\Phi(b)-\Phi(a)=P\{a \leq Z \leq b\}$ when Z is a standard normal random variable.
- $\frac{S_{n}-n p}{\sqrt{n p q}}$ describes "number of standard deviations that S_{n} is above or below its mean".
- Question: Does a similar statement hold if the X_{i} are i.i.d. but have some other probability distribution?

Recall: DeMoivre-Laplace limit theorem

- Let X_{i} be an i.i.d. sequence of random variables. Write $S_{n}=\sum_{i=1}^{n} X_{n}$.
- Suppose each X_{i} is 1 with probability p and 0 with probability $q=1-p$.
- DeMoivre-Laplace limit theorem:

$$
\lim _{n \rightarrow \infty} P\left\{a \leq \frac{S_{n}-n p}{\sqrt{n p q}} \leq b\right\} \rightarrow \Phi(b)-\Phi(a)
$$

- Here $\Phi(b)-\Phi(a)=P\{a \leq Z \leq b\}$ when Z is a standard normal random variable.
- $\frac{S_{n}-n p}{\sqrt{n p q}}$ describes "number of standard deviations that S_{n} is above or below its mean".
- Question: Does a similar statement hold if the X_{i} are i.i.d. but have some other probability 1distribution?
- Central limit theorem: Yes, if they have finite variance.

Example

- Say we roll 10^{6} ordinary dice independently of each other.

Example

- Say we roll 10^{6} ordinary dice independently of each other.
- Let X_{i} be the number on the i th die. Let $X=\sum_{i=1}^{10^{6}} X_{i}$ be the total of the numbers rolled.

Example

- Say we roll 10^{6} ordinary dice independently of each other.
- Let X_{i} be the number on the i th die. Let $X=\sum_{i=1}^{10^{6}} X_{i}$ be the total of the numbers rolled.
- What is $E[X]$?

Example

- Say we roll 10^{6} ordinary dice independently of each other.
- Let X_{i} be the number on the i th die. Let $X=\sum_{i=1}^{10^{6}} X_{i}$ be the total of the numbers rolled.
- What is $E[X]$?
- $10^{6} \cdot(7 / 2)$

Example

- Say we roll 10^{6} ordinary dice independently of each other.
- Let X_{i} be the number on the i th die. Let $X=\sum_{i=1}^{10^{6}} X_{i}$ be the total of the numbers rolled.
- What is $E[X]$?
- $10^{6} \cdot(7 / 2)$
- What is $\operatorname{Var}[X]$?

Example

- Say we roll 10^{6} ordinary dice independently of each other.
- Let X_{i} be the number on the i th die. Let $X=\sum_{i=1}^{10^{6}} X_{i}$ be the total of the numbers rolled.
- What is $E[X]$?
- $10^{6} \cdot(7 / 2)$
- What is $\operatorname{Var}[X]$?
- $10^{6} \cdot(35 / 12)$

Example

- Say we roll 10^{6} ordinary dice independently of each other.
- Let X_{i} be the number on the i th die. Let $X=\sum_{i=1}^{10^{6}} X_{i}$ be the total of the numbers rolled.
- What is $E[X]$?
- $10^{6} \cdot(7 / 2)$
- What is $\operatorname{Var}[X]$?
- $10^{6} \cdot(35 / 12)$
- How about $\mathrm{SD}[X]=\sqrt{\operatorname{Var}[X]}$?

Example

- Say we roll 10^{6} ordinary dice independently of each other.
- Let X_{i} be the number on the i th die. Let $X=\sum_{i=1}^{10^{6}} X_{i}$ be the total of the numbers rolled.
- What is $E[X]$?
- $10^{6} \cdot(7 / 2)$
- What is $\operatorname{Var}[X]$?
- $10^{6} \cdot(35 / 12)$
- How about $\mathrm{SD}[X]=\sqrt{\operatorname{Var}[X]}$?
- $1000 \sqrt{35 / 12}$

Example

- Say we roll 10^{6} ordinary dice independently of each other.
- Let X_{i} be the number on the i th die. Let $X=\sum_{i=1}^{10^{6}} X_{i}$ be the total of the numbers rolled.
- What is $E[X]$?
- $10^{6} \cdot(7 / 2)$
- What is $\operatorname{Var}[X]$?
- $10^{6} \cdot(35 / 12)$
- How about $\mathrm{SD}[X]=\sqrt{\operatorname{Var}[X]}$?
- $1000 \sqrt{35 / 12}$
- What is the probability that X is less than a standard deviations above its mean?

Example

- Say we roll 10^{6} ordinary dice independently of each other.
- Let X_{i} be the number on the i th die. Let $X=\sum_{i=1}^{10^{6}} X_{i}$ be the total of the numbers rolled.
- What is $E[X]$?
- $10^{6} \cdot(7 / 2)$
- What is $\operatorname{Var}[X]$?
- $10^{6} \cdot(35 / 12)$
- How about $\mathrm{SD}[X]=\sqrt{\operatorname{Var}[X]}$?
- $1000 \sqrt{35 / 12}$
- What is the probability that X is less than a standard deviations above its mean?
- Central limit theorem: should be about $\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{a} e^{-x^{2} / 2} d x$.

Example

- Suppose earthquakes in some region are a Poisson point process with rate λ equal to 1 per year.

Example

- Suppose earthquakes in some region are a Poisson point process with rate λ equal to 1 per year.
- Let X be the number of earthquakes that occur over a ten-thousand year period. Should be a Poisson random variable with rate 10000 .

Example

- Suppose earthquakes in some region are a Poisson point process with rate λ equal to 1 per year.
- Let X be the number of earthquakes that occur over a ten-thousand year period. Should be a Poisson random variable with rate 10000 .
- What is $E[X]$?

Example

- Suppose earthquakes in some region are a Poisson point process with rate λ equal to 1 per year.
- Let X be the number of earthquakes that occur over a ten-thousand year period. Should be a Poisson random variable with rate 10000 .
- What is $E[X]$?
- 10000

Example

- Suppose earthquakes in some region are a Poisson point process with rate λ equal to 1 per year.
- Let X be the number of earthquakes that occur over a ten-thousand year period. Should be a Poisson random variable with rate 10000 .
- What is $E[X]$?
- 10000
- What is $\operatorname{Var}[X]$?

Example

- Suppose earthquakes in some region are a Poisson point process with rate λ equal to 1 per year.
- Let X be the number of earthquakes that occur over a ten-thousand year period. Should be a Poisson random variable with rate 10000 .
- What is $E[X]$?
- 10000
- What is $\operatorname{Var}[X]$?
- 10000

Example

- Suppose earthquakes in some region are a Poisson point process with rate λ equal to 1 per year.
- Let X be the number of earthquakes that occur over a ten-thousand year period. Should be a Poisson random variable with rate 10000 .
- What is $E[X]$?
- 10000
- What is $\operatorname{Var}[X]$?
- 10000
- How about $\mathrm{SD}[X]$?

Example

- Suppose earthquakes in some region are a Poisson point process with rate λ equal to 1 per year.
- Let X be the number of earthquakes that occur over a ten-thousand year period. Should be a Poisson random variable with rate 10000 .
- What is $E[X]$?
- 10000
- What is $\operatorname{Var}[X]$?
- 10000
- How about $\mathrm{SD}[X]$?
- 100

Example

- Suppose earthquakes in some region are a Poisson point process with rate λ equal to 1 per year.
- Let X be the number of earthquakes that occur over a ten-thousand year period. Should be a Poisson random variable with rate 10000 .
- What is $E[X]$?
- 10000
- What is $\operatorname{Var}[X]$?
- 10000
- How about $\mathrm{SD}[X]$?
- 100
- What is the probability that X is less than a standard deviations above its mean?

Example

- Suppose earthquakes in some region are a Poisson point process with rate λ equal to 1 per year.
- Let X be the number of earthquakes that occur over a ten-thousand year period. Should be a Poisson random variable with rate 10000 .
- What is $E[X]$?
- 10000
- What is $\operatorname{Var}[X]$?
- 10000
- How about $\mathrm{SD}[X]$?
- 100
- What is the probability that X is less than a standard deviations above its mean?
- Central limit theorem: should be about $\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{a} e^{-x^{2} / 2} d x$.

General statement

- Let X_{i} be an i.i.d. sequence of random variables with finite mean μ and variance σ^{2}.

General statement

- Let X_{i} be an i.i.d. sequence of random variables with finite mean μ and variance σ^{2}.
- Write $S_{n}=\sum_{i=1}^{n} X_{i}$. So $E\left[S_{n}\right]=n \mu$ and $\operatorname{Var}\left[S_{n}\right]=n \sigma^{2}$ and $\mathrm{SD}\left[S_{n}\right]=\sigma \sqrt{n}$.

General statement

- Let X_{i} be an i.i.d. sequence of random variables with finite mean μ and variance σ^{2}.
- Write $S_{n}=\sum_{i=1}^{n} X_{i}$. So $E\left[S_{n}\right]=n \mu$ and $\operatorname{Var}\left[S_{n}\right]=n \sigma^{2}$ and $\mathrm{SD}\left[S_{n}\right]=\sigma \sqrt{n}$.
- Write $B_{n}=\frac{X_{1}+X_{2}+\ldots+X_{n}-n \mu}{\sigma \sqrt{n}}$. Then B_{n} is the difference between S_{n} and its expectation, measured in standard deviation units.

General statement

- Let X_{i} be an i.i.d. sequence of random variables with finite mean μ and variance σ^{2}.
- Write $S_{n}=\sum_{i=1}^{n} X_{i}$. So $E\left[S_{n}\right]=n \mu$ and $\operatorname{Var}\left[S_{n}\right]=n \sigma^{2}$ and $\mathrm{SD}\left[S_{n}\right]=\sigma \sqrt{n}$.
- Write $B_{n}=\frac{X_{1}+X_{2}+\ldots+X_{n}-n \mu}{\sigma \sqrt{n}}$. Then B_{n} is the difference between S_{n} and its expectation, measured in standard deviation units.
- Central limit theorem:

$$
\lim _{n \rightarrow \infty} P\left\{a \leq B_{n} \leq b\right\} \rightarrow \Phi(b)-\Phi(a)
$$

Outline

Central limit theorem

Proving the central limit theorem

Outline

Central limit theorem

Proving the central limit theorem

Recall: characteristic functions

- Let X be a random variable.

Recall: characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$. Like $M(t)$ except with i thrown in.

Recall: characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$. Like $M(t)$ except with i thrown in.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.

Recall: characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$. Like $M(t)$ except with i thrown in.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic functions are similar to moment generating functions in some ways.

Recall: characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$. Like $M(t)$ except with i thrown in.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, $\phi_{X+Y}=\phi_{X} \phi_{Y}$, just as $M_{X+Y}=M_{X} M_{Y}$, if X and Y are independent.

Recall: characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$. Like $M(t)$ except with i thrown in.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, $\phi_{X+Y}=\phi_{X} \phi_{Y}$, just as $M_{X+Y}=M_{X} M_{Y}$, if X and Y are independent.
- And $\phi_{a X}(t)=\phi_{X}(a t)$ just as $M_{a X}(t)=M_{X}(a t)$.

Recall: characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$. Like $M(t)$ except with i thrown in.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, $\phi_{X+Y}=\phi_{X} \phi_{Y}$, just as $M_{X+Y}=M_{X} M_{Y}$, if X and Y are independent.
- And $\phi_{a X}(t)=\phi_{X}(a t)$ just as $M_{a X}(t)=M_{X}(a t)$.
- And if X has an m th moment then $E\left[X^{m}\right]=i^{m} \phi_{X}^{(m)}(0)$.

Recall: characteristic functions

- Let X be a random variable.
- The characteristic function of X is defined by $\phi(t)=\phi_{X}(t):=E\left[e^{i t X}\right]$. Like $M(t)$ except with i thrown in.
- Recall that by definition $e^{i t}=\cos (t)+i \sin (t)$.
- Characteristic functions are similar to moment generating functions in some ways.
- For example, $\phi_{X+Y}=\phi_{X} \phi_{Y}$, just as $M_{X+Y}=M_{X} M_{Y}$, if X and Y are independent.
- And $\phi_{a X}(t)=\phi_{X}(a t)$ just as $M_{a X}(t)=M_{X}(a t)$.
- And if X has an m th moment then $E\left[X^{m}\right]=i^{m} \phi_{X}^{(m)}(0)$.
- Characteristic functions are well defined at all t for all random variables X.

Rephrasing the theorem

- Let X be a random variable and X_{n} a sequence of random variables.

Rephrasing the theorem

- Let X be a random variable and X_{n} a sequence of random variables.
- Say X_{n} converge in distribution or converge in law to X if $\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)$ at all $x \in \mathbb{R}$ at which F_{X} is continuous.

Rephrasing the theorem

- Let X be a random variable and X_{n} a sequence of random variables.
- Say X_{n} converge in distribution or converge in law to X if $\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)$ at all $x \in \mathbb{R}$ at which F_{X} is
continuous.
- Recall: the weak law of large numbers can be rephrased as the statement that $A_{n}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$ converges in law to μ (i.e., to the random variable that is equal to μ with probability one) as $n \rightarrow \infty$.

Rephrasing the theorem

- Let X be a random variable and X_{n} a sequence of random variables.
- Say X_{n} converge in distribution or converge in law to X if $\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)$ at all $x \in \mathbb{R}$ at which F_{X} is continuous.
- Recall: the weak law of large numbers can be rephrased as the statement that $A_{n}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$ converges in law to μ (i.e., to the random variable that is equal to μ with probability one) as $n \rightarrow \infty$.
- The central limit theorem can be rephrased as the statement that $B_{n}=\frac{X_{1}+X_{2}+\ldots+X_{n}-n \mu}{\sigma \sqrt{n}}$ converges in law to a standard normal random variable as $n \rightarrow \infty$.

Continuity theorems

- Lévy's continuity theorem (see Wikipedia): if

$$
\lim _{n \rightarrow \infty} \phi_{X_{n}}(t)=\phi_{X}(t)
$$

for all t, then X_{n} converge in law to X.

Continuity theorems

- Lévy's continuity theorem (see Wikipedia): if

$$
\lim _{n \rightarrow \infty} \phi_{X_{n}}(t)=\phi_{X}(t)
$$

for all t, then X_{n} converge in law to X.

- By this theorem, we can prove the central limit theorem by showing $\lim _{n \rightarrow \infty} \phi_{B_{n}}(t)=e^{-t^{2} / 2}$ for all t.

Continuity theorems

- Lévy's continuity theorem (see Wikipedia): if

$$
\lim _{n \rightarrow \infty} \phi_{X_{n}}(t)=\phi_{X}(t)
$$

for all t, then X_{n} converge in law to X.

- By this theorem, we can prove the central limit theorem by showing $\lim _{n \rightarrow \infty} \phi_{B_{n}}(t)=e^{-t^{2} / 2}$ for all t.
- Moment generating function continuity theorem: if moment generating functions $M_{X_{n}}(t)$ are defined for all t and n and $\lim _{n \rightarrow \infty} M_{X_{n}}(t)=M_{X}(t)$ for all t, then X_{n} converge in law to X.

Continuity theorems

- Lévy's continuity theorem (see Wikipedia): if

$$
\lim _{n \rightarrow \infty} \phi_{X_{n}}(t)=\phi_{X}(t)
$$

for all t, then X_{n} converge in law to X.

- By this theorem, we can prove the central limit theorem by showing $\lim _{n \rightarrow \infty} \phi_{B_{n}}(t)=e^{-t^{2} / 2}$ for all t.
- Moment generating function continuity theorem: if moment generating functions $M_{X_{n}}(t)$ are defined for all t and n and $\lim _{n \rightarrow \infty} M_{X_{n}}(t)=M_{X}(t)$ for all t, then X_{n} converge in law to X.
- By this theorem, we can prove the central limit theorem by showing $\lim _{n \rightarrow \infty} M_{B_{n}}(t)=\underset{52}{e^{t^{2} / 2}}$ for all t.

Proof of central limit theorem with moment generating functions

- Write $Y=\frac{X-\mu}{\sigma}$. Then Y has mean zero and variance 1 .

Proof of central limit theorem with moment generating functions

- Write $Y=\frac{X-\mu}{\sigma}$. Then Y has mean zero and variance 1 .
- Write $M_{Y}(t)=E\left[e^{t Y}\right]$ and $g(t)=\log M_{Y}(t)$. So $M_{Y}(t)=e^{g(t)}$.

Proof of central limit theorem with moment generating

 functions- Write $Y=\frac{X-\mu}{\sigma}$. Then Y has mean zero and variance 1 .
- Write $M_{Y}(t)=E\left[e^{t Y}\right]$ and $g(t)=\log M_{Y}(t)$. So $M_{Y}(t)=e^{g(t)}$.
- We know $g(0)=0$. Also $M_{Y}^{\prime}(0)=E[Y]=0$ and $M_{Y}^{\prime \prime}(0)=E\left[Y^{2}\right]=\operatorname{Var}[Y]=1$.

Proof of central limit theorem with moment generating

 functions- Write $Y=\frac{X-\mu}{\sigma}$. Then Y has mean zero and variance 1 .
- Write $M_{Y}(t)=E\left[e^{t Y}\right]$ and $g(t)=\log M_{Y}(t)$. So $M_{Y}(t)=e^{g(t)}$.
- We know $g(0)=0$. Also $M_{Y}^{\prime}(0)=E[Y]=0$ and $M_{Y}^{\prime \prime}(0)=E\left[Y^{2}\right]=\operatorname{Var}[Y]=1$.
- Chain rule: $M_{Y}^{\prime}(0)=g^{\prime}(0) e^{g(0)}=g^{\prime}(0)=0$ and $M_{Y}^{\prime \prime}(0)=g^{\prime \prime}(0) e^{g(0)}+g^{\prime}(0)^{2} e^{g(0)}=g^{\prime \prime}(0)=1$.

Proof of central limit theorem with moment generating

 functions- Write $Y=\frac{X-\mu}{\sigma}$. Then Y has mean zero and variance 1 .
- Write $M_{Y}(t)=E\left[e^{t Y}\right]$ and $g(t)=\log M_{Y}(t)$. So $M_{Y}(t)=e^{g(t)}$.
- We know $g(0)=0$. Also $M_{Y}^{\prime}(0)=E[Y]=0$ and $M_{Y}^{\prime \prime}(0)=E\left[Y^{2}\right]=\operatorname{Var}[Y]=1$.
- Chain rule: $M_{Y}^{\prime}(0)=g^{\prime}(0) e^{g(0)}=g^{\prime}(0)=0$ and $M_{Y}^{\prime \prime}(0)=g^{\prime \prime}(0) e^{g(0)}+g^{\prime}(0)^{2} e^{g(0)}=g^{\prime \prime}(0)=1$.
- So g is a nice function with $g(0)=g^{\prime}(0)=0$ and $g^{\prime \prime}(0)=1$. Taylor expansion: $g(t)=t^{2} / 2+o\left(t^{2}\right)$ for t near zero.

Proof of central limit theorem with moment generating functions

- Write $Y=\frac{X-\mu}{\sigma}$. Then Y has mean zero and variance 1 .
- Write $M_{Y}(t)=E\left[e^{t Y}\right]$ and $g(t)=\log M_{Y}(t)$. So $M_{Y}(t)=e^{g(t)}$.
- We know $g(0)=0$. Also $M_{Y}^{\prime}(0)=E[Y]=0$ and $M_{Y}^{\prime \prime}(0)=E\left[Y^{2}\right]=\operatorname{Var}[Y]=1$.
- Chain rule: $M_{Y}^{\prime}(0)=g^{\prime}(0) e^{g(0)}=g^{\prime}(0)=0$ and $M_{Y}^{\prime \prime}(0)=g^{\prime \prime}(0) e^{g(0)}+g^{\prime}(0)^{2} e^{g(0)}=g^{\prime \prime}(0)=1$.
- So g is a nice function with $g(0)=g^{\prime}(0)=0$ and $g^{\prime \prime}(0)=1$. Taylor expansion: $g(t)=t^{2} / 2+o\left(t^{2}\right)$ for t near zero.
- Now B_{n} is $\frac{1}{\sqrt{n}}$ times the sum of n independent copies of Y.

Proof of central limit theorem with moment generating functions

- Write $Y=\frac{X-\mu}{\sigma}$. Then Y has mean zero and variance 1 .
- Write $M_{Y}(t)=E\left[e^{t Y}\right]$ and $g(t)=\log M_{Y}(t)$. So $M_{Y}(t)=e^{g(t)}$.
- We know $g(0)=0$. Also $M_{Y}^{\prime}(0)=E[Y]=0$ and $M_{Y}^{\prime \prime}(0)=E\left[Y^{2}\right]=\operatorname{Var}[Y]=1$.
- Chain rule: $M_{Y}^{\prime}(0)=g^{\prime}(0) e^{g(0)}=g^{\prime}(0)=0$ and $M_{Y}^{\prime \prime}(0)=g^{\prime \prime}(0) e^{g(0)}+g^{\prime}(0)^{2} e^{g(0)}=g^{\prime \prime}(0)=1$.
- So g is a nice function with $g(0)=g^{\prime}(0)=0$ and $g^{\prime \prime}(0)=1$. Taylor expansion: $g(t)=t^{2} / 2+o\left(t^{2}\right)$ for t near zero.
- Now B_{n} is $\frac{1}{\sqrt{n}}$ times the sum of n independent copies of Y.
- So $M_{B_{n}}(t)=\left(M_{Y}(t / \sqrt{n})\right)^{n}=e^{n g\left(\frac{t}{\sqrt{n}}\right)}$.

Proof of central limit theorem with moment generating functions

- Write $Y=\frac{X-\mu}{\sigma}$. Then Y has mean zero and variance 1 .
- Write $M_{Y}(t)=E\left[e^{t Y}\right]$ and $g(t)=\log M_{Y}(t)$. So $M_{Y}(t)=e^{g(t)}$.
- We know $g(0)=0$. Also $M_{Y}^{\prime}(0)=E[Y]=0$ and $M_{Y}^{\prime \prime}(0)=E\left[Y^{2}\right]=\operatorname{Var}[Y]=1$.
- Chain rule: $M_{Y}^{\prime}(0)=g^{\prime}(0) e^{g(0)}=g^{\prime}(0)=0$ and $M_{Y}^{\prime \prime}(0)=g^{\prime \prime}(0) e^{g(0)}+g^{\prime}(0)^{2} e^{g(0)}=g^{\prime \prime}(0)=1$.
- So g is a nice function with $g(0)=g^{\prime}(0)=0$ and $g^{\prime \prime}(0)=1$. Taylor expansion: $g(t)=t^{2} / 2+o\left(t^{2}\right)$ for t near zero.
- Now B_{n} is $\frac{1}{\sqrt{n}}$ times the sum of n independent copies of Y.
- So $M_{B_{n}}(t)=\left(M_{Y}(t / \sqrt{n})\right)^{n}=e^{n g\left(\frac{t}{\sqrt{n}}\right)}$.
- But $e^{n g\left(\frac{t}{\sqrt{n}}\right)} \approx e^{n\left(\frac{t}{\sqrt{n}}\right)^{2} / 2}=e^{60^{2} / 2}$, in sense that LHS tends to $e^{t^{2} / 2}$ as n tends to infinity.

Proof of central limit theorem with characteristic functions

- Moment generating function proof only applies if the moment generating function of X exists.

Proof of central limit theorem with characteristic functions

- Moment generating function proof only applies if the moment generating function of X exists.
- But the proof can be repeated almost verbatim using characteristic functions instead of moment generating functions.

Proof of central limit theorem with characteristic functions

- Moment generating function proof only applies if the moment generating function of X exists.
- But the proof can be repeated almost verbatim using characteristic functions instead of moment generating functions.
- Then it applies for any X with finite variance.

Almost verbatim: replace $M_{Y}(t)$ with $\phi_{Y}(t)$

Almost verbatim: replace $M_{\curlyvee}(t)$ with $\phi_{\curlyvee}(t)$

- Write $\phi_{Y}(t)=E\left[e^{i t Y}\right]$ and $g(t)=\log \phi_{Y}(t)$. So $\phi_{Y}(t)=e^{g(t)}$.

Almost verbatim: replace $M_{\curlyvee}(t)$ with $\phi_{\curlyvee}(t)$

- Write $\phi_{Y}(t)=E\left[e^{i t Y}\right]$ and $g(t)=\log \phi_{Y}(t)$. So $\phi_{Y}(t)=e^{g(t)}$.
- We know $g(0)=0$. Also $\phi_{Y}^{\prime}(0)=i E[Y]=0$ and $\phi_{Y}^{\prime \prime}(0)=i^{2} E\left[Y^{2}\right]=-\operatorname{Var}[Y]=-1$.

Almost verbatim: replace $M_{\curlyvee}(t)$ with $\phi_{\curlyvee}(t)$

- Write $\phi_{Y}(t)=E\left[e^{i t Y}\right]$ and $g(t)=\log \phi_{Y}(t)$. So $\phi_{Y}(t)=e^{g(t)}$.
- We know $g(0)=0$. Also $\phi_{Y}^{\prime}(0)=i E[Y]=0$ and $\phi_{Y}^{\prime \prime}(0)=i^{2} E\left[Y^{2}\right]=-\operatorname{Var}[Y]=-1$.
- Chain rule: $\phi_{Y}^{\prime}(0)=g^{\prime}(0) e^{g(0)}=g^{\prime}(0)=0$ and $\phi_{Y}^{\prime \prime}(0)=g^{\prime \prime}(0) e^{g(0)}+g^{\prime}(0)^{2} e^{g(0)}=g^{\prime \prime}(0)=-1$.

Almost verbatim: replace $M_{\curlyvee}(t)$ with $\phi_{\curlyvee}(t)$

- Write $\phi_{Y}(t)=E\left[e^{i t Y}\right]$ and $g(t)=\log \phi_{Y}(t)$. So $\phi_{Y}(t)=e^{g(t)}$.
- We know $g(0)=0$. Also $\phi_{Y}^{\prime}(0)=i E[Y]=0$ and $\phi_{Y}^{\prime \prime}(0)=i^{2} E\left[Y^{2}\right]=-\operatorname{Var}[Y]=-1$.
- Chain rule: $\phi_{Y}^{\prime}(0)=g^{\prime}(0) e^{g(0)}=g^{\prime}(0)=0$ and $\phi_{Y}^{\prime \prime}(0)=g^{\prime \prime}(0) e^{g(0)}+g^{\prime}(0)^{2} e^{g(0)}=g^{\prime \prime}(0)=-1$.
- So g is a nice function with $g(0)=g^{\prime}(0)=0$ and $g^{\prime \prime}(0)=-1$. Taylor expansion: $g(t)=-t^{2} / 2+o\left(t^{2}\right)$ for t near zero.

Almost verbatim: replace $M_{Y}(t)$ with $\phi_{Y}(t)$

- Write $\phi_{Y}(t)=E\left[e^{i t Y}\right]$ and $g(t)=\log \phi_{Y}(t)$. So $\phi_{Y}(t)=e^{g(t)}$.
- We know $g(0)=0$. Also $\phi_{Y}^{\prime}(0)=i E[Y]=0$ and $\phi_{Y}^{\prime \prime}(0)=i^{2} E\left[Y^{2}\right]=-\operatorname{Var}[Y]=-1$.
- Chain rule: $\phi_{Y}^{\prime}(0)=g^{\prime}(0) e^{g(0)}=g^{\prime}(0)=0$ and $\phi_{Y}^{\prime \prime}(0)=g^{\prime \prime}(0) e^{g(0)}+g^{\prime}(0)^{2} e^{g(0)}=g^{\prime \prime}(0)=-1$.
- So g is a nice function with $g(0)=g^{\prime}(0)=0$ and $g^{\prime \prime}(0)=-1$. Taylor expansion: $g(t)=-t^{2} / 2+o\left(t^{2}\right)$ for t near zero.
- Now B_{n} is $\frac{1}{\sqrt{n}}$ times the sum of n independent copies of Y.

Almost verbatim: replace $M_{Y}(t)$ with $\phi_{\curlyvee}(t)$

- Write $\phi_{Y}(t)=E\left[e^{i t Y}\right]$ and $g(t)=\log \phi_{Y}(t)$. So $\phi_{Y}(t)=e^{g(t)}$.
- We know $g(0)=0$. Also $\phi_{Y}^{\prime}(0)=i E[Y]=0$ and $\phi_{Y}^{\prime \prime}(0)=i^{2} E\left[Y^{2}\right]=-\operatorname{Var}[Y]=-1$.
- Chain rule: $\phi_{Y}^{\prime}(0)=g^{\prime}(0) e^{g(0)}=g^{\prime}(0)=0$ and $\phi_{Y}^{\prime \prime}(0)=g^{\prime \prime}(0) e^{g(0)}+g^{\prime}(0)^{2} e^{g(0)}=g^{\prime \prime}(0)=-1$.
- So g is a nice function with $g(0)=g^{\prime}(0)=0$ and $g^{\prime \prime}(0)=-1$. Taylor expansion: $g(t)=-t^{2} / 2+o\left(t^{2}\right)$ for t near zero.
- Now B_{n} is $\frac{1}{\sqrt{n}}$ times the sum of n independent copies of Y.
- So $\phi_{B_{n}}(t)=\left(\phi_{Y}(t / \sqrt{n})\right)^{n}=e^{n g\left(\frac{t}{\sqrt{n}}\right)}$.

Almost verbatim: replace $M_{Y}(t)$ with $\phi_{Y}(t)$

- Write $\phi_{Y}(t)=E\left[e^{i t Y}\right]$ and $g(t)=\log \phi_{Y}(t)$. So $\phi_{Y}(t)=e^{g(t)}$.
- We know $g(0)=0$. Also $\phi_{Y}^{\prime}(0)=i E[Y]=0$ and $\phi_{Y}^{\prime \prime}(0)=i^{2} E\left[Y^{2}\right]=-\operatorname{Var}[Y]=-1$.
- Chain rule: $\phi_{Y}^{\prime}(0)=g^{\prime}(0) e^{g(0)}=g^{\prime}(0)=0$ and $\phi_{Y}^{\prime \prime}(0)=g^{\prime \prime}(0) e^{g(0)}+g^{\prime}(0)^{2} e^{g(0)}=g^{\prime \prime}(0)=-1$.
- So g is a nice function with $g(0)=g^{\prime}(0)=0$ and $g^{\prime \prime}(0)=-1$. Taylor expansion: $g(t)=-t^{2} / 2+o\left(t^{2}\right)$ for t near zero.
- Now B_{n} is $\frac{1}{\sqrt{n}}$ times the sum of n independent copies of Y.
- So $\phi_{B_{n}}(t)=\left(\phi_{Y}(t / \sqrt{n})\right)^{n}=e^{n g\left(\frac{t}{\sqrt{n}}\right)}$.
- But $e^{n g\left(\frac{t}{\sqrt{n}}\right)} \approx e^{-n\left(\frac{t}{\sqrt{n}}\right)^{2} / 2}=e^{-t^{2} / 2}$, in sense that LHS tends to $e^{-t^{2} / 2}$ as n tends to infinity.

Perspective

- The central limit theorem is actually fairly robust. Variants of the theorem still apply if you allow the X_{i} not to be identically distributed, or not to be completely independent.

Perspective

- The central limit theorem is actually fairly robust. Variants of the theorem still apply if you allow the X_{i} not to be identically distributed, or not to be completely independent.
- We won't formulate these variants precisely in this course.

Perspective

- The central limit theorem is actually fairly robust. Variants of the theorem still apply if you allow the X_{i} not to be identically distributed, or not to be completely independent.
- We won't formulate these variants precisely in this course.
- But, roughly speaking, if you have a lot of little random terms that are "mostly independent" - and no single term contributes more than a "small fraction" of the total sum then the total sum should be "approximately" normal.

Perspective

- The central limit theorem is actually fairly robust. Variants of the theorem still apply if you allow the X_{i} not to be identically distributed, or not to be completely independent.
- We won't formulate these variants precisely in this course.
- But, roughly speaking, if you have a lot of little random terms that are "mostly independent" - and no single term contributes more than a "small fraction" of the total sum then the total sum should be "approximately" normal.
- Example: if height is determined by lots of little mostly independent factors, then people's heights should be normally distributed.

Perspective

- The central limit theorem is actually fairly robust. Variants of the theorem still apply if you allow the X_{i} not to be identically distributed, or not to be completely independent.
- We won't formulate these variants precisely in this course.
- But, roughly speaking, if you have a lot of little random terms that are "mostly independent" - and no single term contributes more than a "small fraction" of the total sum then the total sum should be "approximately" normal.
- Example: if height is determined by lots of little mostly independent factors, then people's heights should be normally distributed.
- Not quite true... certain factors by themselves can cause a person to be a whole lot shorter or taller. Also, individual factors not really independeqt of each other.

Perspective

- The central limit theorem is actually fairly robust. Variants of the theorem still apply if you allow the X_{i} not to be identically distributed, or not to be completely independent.
- We won't formulate these variants precisely in this course.
- But, roughly speaking, if you have a lot of little random terms that are "mostly independent" - and no single term contributes more than a "small fraction" of the total sum then the total sum should be "approximately" normal.
- Example: if height is determined by lots of little mostly independent factors, then people's heights should be normally distributed.
- Not quite true... certain factors by themselves can cause a person to be a whole lot shorter or taller. Also, individual factors not really independeq \ddagger of each other.
- Kind of true for homogenous population, ignoring outliers.

MIT OpenCourseWare https://ocw.mit.edu

18.600 Probability and Random Variables

Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

