18.600: Lecture 18 Normal random variables

Scott Sheffield

MIT

Outline

Tossing coins

Normal random variables

Special case of central limit theorem

Outline

Tossing coins

Normal random variables

Special case of central limit theoren

Suppose we toss a million fair coins. How many heads will we get?

- ► Suppose we toss a million fair coins. How many heads will we get?
- ▶ About half a million, yes, but how close to that? Will we be off by 10 or 1000 or 100,000?

- Suppose we toss a million fair coins. How many heads will we get?
- ▶ About half a million, yes, but how close to that? Will we be off by 10 or 1000 or 100,000?
- ▶ How can we describe the error?

- ► Suppose we toss a million fair coins. How many heads will we get?
- ▶ About half a million, yes, but how close to that? Will we be off by 10 or 1000 or 100,000?
- ▶ How can we describe the error?
- Let's try this out.

▶ Toss *n* coins. What is probability to see *k* heads?

- ▶ Toss n coins. What is probability to see k heads?
- Answer: $2^{-k} \binom{n}{k}$.

- ▶ Toss *n* coins. What is probability to see *k* heads?
- Answer: $2^{-k} \binom{n}{k}$.
- Let's plot this for a few values of *n*.

- ▶ Toss *n* coins. What is probability to see *k* heads?
- Answer: $2^{-k} \binom{n}{k}$.
- Let's plot this for a few values of *n*.
- Seems to look like it's converging to a curve.

- ▶ Toss *n* coins. What is probability to see *k* heads?
- Answer: $2^{-k} \binom{n}{k}$.
- Let's plot this for a few values of *n*.
- Seems to look like it's converging to a curve.
- If we replace fair coin with p coin, what's probability to see k heads.

- ▶ Toss *n* coins. What is probability to see *k* heads?
- Answer: $2^{-k} \binom{n}{k}$.
- Let's plot this for a few values of *n*.
- Seems to look like it's converging to a curve.
- If we replace fair coin with p coin, what's probability to see k heads.
- Answer: $p^k(1-p)^{n-k}\binom{n}{k}$.

- ▶ Toss *n* coins. What is probability to see *k* heads?
- Answer: $2^{-k} \binom{n}{k}$.
- Let's plot this for a few values of *n*.
- Seems to look like it's converging to a curve.
- If we replace fair coin with p coin, what's probability to see k heads.
- Answer: $p^k(1-p)^{n-k}\binom{n}{k}$.
- Let's plot this for p = 2/3 and some values of n.

- ▶ Toss *n* coins. What is probability to see *k* heads?
- Answer: $2^{-k} \binom{n}{k}$.
- Let's plot this for a few values of *n*.
- Seems to look like it's converging to a curve.
- If we replace fair coin with p coin, what's probability to see k heads.
- Answer: $p^k(1-p)^{n-k}\binom{n}{k}$.
- Let's plot this for p = 2/3 and some values of n.
- What does limit shape seem to be?

Outline

Tossing coins

Normal random variables

Special case of central limit theorem

Outline

Tossing coins

Normal random variables

Special case of central limit theoren

Say X is a (standard) **normal random variable** if $f_X(x) = f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.

- Say X is a (standard) **normal random variable** if $f_X(x) = f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.
- ▶ Clearly f is always non-negative for real values of x, but how do we show that $\int_{-\infty}^{\infty} f(x) dx = 1$?

- Say X is a (standard) **normal random variable** if $f_X(x) = f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.
- ▶ Clearly f is always non-negative for real values of x, but how do we show that $\int_{-\infty}^{\infty} f(x) dx = 1$?
- Looks kind of tricky.

- Say X is a (standard) **normal random variable** if $f_X(x) = f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.
- ▶ Clearly f is always non-negative for real values of x, but how do we show that $\int_{-\infty}^{\infty} f(x) dx = 1$?
- Looks kind of tricky.
- ► Happens to be a nice trick. Write $I = \int_{-\infty}^{\infty} e^{-x^2/2} dx$. Then try to compute I^2 as a two dimensional integral.

- Say X is a (standard) **normal random variable** if $f_X(x) = f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.
- ▶ Clearly f is always non-negative for real values of x, but how do we show that $\int_{-\infty}^{\infty} f(x) dx = 1$?
- Looks kind of tricky.
- ▶ Happens to be a nice trick. Write $I = \int_{-\infty}^{\infty} e^{-x^2/2} dx$. Then try to compute I^2 as a two dimensional integral.
- That is, write

$$I^{2} = \int_{-\infty}^{\infty} e^{-x^{2}/2} dx \int_{-\infty}^{\infty} e^{-y^{2}/2} dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}/2} dx e^{-y^{2}/2} dy.$$

- Say X is a (standard) **normal random variable** if $f_X(x) = f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$.
- ▶ Clearly f is always non-negative for real values of x, but how do we show that $\int_{-\infty}^{\infty} f(x) dx = 1$?
- ► Looks kind of tricky.
- ► Happens to be a nice trick. Write $I = \int_{-\infty}^{\infty} e^{-x^2/2} dx$. Then try to compute I^2 as a two dimensional integral.
- That is, write

$$I^{2} = \int_{-\infty}^{\infty} e^{-x^{2}/2} dx \int_{-\infty}^{\infty} e^{-y^{2}/2} dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}/2} dx e^{-y^{2}/2} dy.$$

▶ Then switch to polar coordinates.

$$I^{2} = \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^{2}/2} r d\theta dr = 2\pi \int_{0}^{\infty} r e^{-r^{2}/2} dr = -2\pi e^{-r^{2}/2} \frac{\infty}{0},$$
 so $I = \sqrt{2\pi}$.

Say X is a (standard) **normal random variable** if $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.

- Say X is a (standard) **normal random variable** if $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.
- Question: what are mean and variance of X?

- Say X is a (standard) **normal random variable** if $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.
- Question: what are mean and variance of X?
- ▶ $E[X] = \int_{-\infty}^{\infty} xf(x)dx$. Can see by symmetry that this zero.

- Say X is a (standard) **normal random variable** if $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.
- Question: what are mean and variance of X?
- ▶ $E[X] = \int_{-\infty}^{\infty} xf(x)dx$. Can see by symmetry that this zero.
- Or can compute directly:

$$E[X] = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} x dx = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \Big|_{-\infty}^{\infty} = 0.$$

- Say X is a (standard) **normal random variable** if $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.
- Question: what are mean and variance of X?
- ▶ $E[X] = \int_{-\infty}^{\infty} xf(x)dx$. Can see by symmetry that this zero.
- Or can compute directly:

$$E[X] = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} x dx = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} = 0.$$

► How would we compute $Var[X] = \int f(x)x^2 dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} x^2 dx$?

- Say X is a (standard) **normal random variable** if $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.
- Question: what are mean and variance of X?
- ▶ $E[X] = \int_{-\infty}^{\infty} xf(x)dx$. Can see by symmetry that this zero.
- Or can compute directly:

$$E[X] = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} x dx = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} = 0.$$

- ► How would we compute $Var[X] = \int f(x)x^2 dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} x^2 dx$?
- ► Try integration by parts with u = x and $dv = xe^{-x^2/2}dx$. Find that $\operatorname{Var}[X] = \frac{1}{\sqrt{2\pi}} \left(-xe^{-x^2/2} \sum_{-\infty}^{\infty} + \int_{-\infty}^{\infty} e^{-x^2/2} dx \right) = 1$.

Again, X is a (standard) **normal random variable** if $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.

- ▶ Again, X is a (standard) **normal random variable** if $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.
- ▶ What about $Y = \sigma X + \mu$? Can we "stretch out" and "translate" the normal distribution (as we did last lecture for the uniform distribution)?

- ▶ Again, X is a (standard) **normal random variable** if $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.
- ▶ What about $Y = \sigma X + \mu$? Can we "stretch out" and "translate" the normal distribution (as we did last lecture for the uniform distribution)?
- Say Y is normal with parameters μ and σ^2 if $f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}$.

- ▶ Again, X is a (standard) **normal random variable** if $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.
- ▶ What about $Y = \sigma X + \mu$? Can we "stretch out" and "translate" the normal distribution (as we did last lecture for the uniform distribution)?
- Say Y is normal with parameters μ and σ^2 if $f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}$.
- ▶ What are the mean and variance of *Y*?

- ▶ Again, X is a (standard) **normal random variable** if $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.
- ▶ What about $Y = \sigma X + \mu$? Can we "stretch out" and "translate" the normal distribution (as we did last lecture for the uniform distribution)?
- ► Say Y is normal with parameters μ and σ^2 if $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$.
- ▶ What are the mean and variance of *Y*?
- $E[Y] = E[X] + \mu = \mu$ and $Var[Y] = \sigma^2 Var[X] = \sigma^2$.

Cumulative distribution function

▶ Again, X is a standard normal random variable if $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.

Cumulative distribution function

- ▶ Again, X is a standard normal random variable if $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.
- ▶ What is the cumulative distribution function?

- Again, X is a standard normal random variable if $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.
- What is the cumulative distribution function?
- ▶ Write this as $F_X(a) = P\{X \le a\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{-x^2/2} dx$.

- Again, X is a standard normal random variable if $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.
- What is the cumulative distribution function?
- ▶ Write this as $F_X(a) = P\{X \le a\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{-x^2/2} dx$.
- How can we compute this integral explicitly?

- Again, X is a standard normal random variable if $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.
- What is the cumulative distribution function?
- ▶ Write this as $F_X(a) = P\{X \le a\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{-x^2/2} dx$.
- How can we compute this integral explicitly?
- ► Can't. Let's just give it a name. Write $\Phi(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} dx$.

- Again, X is a standard normal random variable if $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.
- What is the cumulative distribution function?
- ▶ Write this as $F_X(a) = P\{X \le a\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{-x^2/2} dx$.
- How can we compute this integral explicitly?
- ► Can't. Let's just give it a name. Write $\Phi(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} dx$.
- ▶ Values: $\Phi(-3) \approx .0013$, $\Phi(-2) \approx .023$ and $\Phi(-1) \approx .159$.

- ▶ Again, X is a standard normal random variable if $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.
- What is the cumulative distribution function?
- ▶ Write this as $F_X(a) = P\{X \le a\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{-x^2/2} dx$.
- How can we compute this integral explicitly?
- ► Can't. Let's just give it a name. Write $\Phi(a) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} dx$.
- ▶ Values: $\Phi(-3) \approx .0013$, $\Phi(-2) \approx .023$ and $\Phi(-1) \approx .159$.
- ▶ Rough rule of thumb: "two thirds of time within one SD of mean, 95 percent of time within 2 SDs of mean."

Outline

Tossing coins

Normal random variables

Special case of central limit theorem

Outline

Tossing coins

Normal random variables

Special case of central limit theorem

Let S_n be number of heads in n tosses of a p coin.

- Let S_n be number of heads in n tosses of a p coin.
- ▶ What's the standard deviation of S_n ?

- Let S_n be number of heads in n tosses of a p coin.
- ▶ What's the standard deviation of S_n ?
- Answer: \sqrt{npq} (where q = 1 p).

- Let S_n be number of heads in n tosses of a p coin.
- ▶ What's the standard deviation of S_n ?
- Answer: \sqrt{npq} (where q = 1 p).
- ► The special quantity $\frac{S_n np}{\sqrt{npq}}$ describes the number of standard deviations that S_n is above or below its mean.

- Let S_n be number of heads in n tosses of a p coin.
- ▶ What's the standard deviation of S_n ?
- Answer: \sqrt{npq} (where q = 1 p).
- ► The special quantity $\frac{S_n np}{\sqrt{npq}}$ describes the number of standard deviations that S_n is above or below its mean.
- What's the mean and variance of this special quantity? Is it roughly normal?

- Let S_n be number of heads in n tosses of a p coin.
- ▶ What's the standard deviation of S_n ?
- Answer: \sqrt{npq} (where q = 1 p).
- ► The special quantity $\frac{S_n np}{\sqrt{npq}}$ describes the number of standard deviations that S_n is above or below its mean.
- What's the mean and variance of this special quantity? Is it roughly normal?
- DeMoivre-Laplace limit theorem (special case of central limit theorem):

$$\lim_{n\to\infty} P\{a\leq \frac{S_n-np}{\sqrt{npq}}\leq b\}\to \Phi(b)-\Phi(a).$$

- Let S_n be number of heads in n tosses of a p coin.
- ▶ What's the standard deviation of S_n ?
- Answer: \sqrt{npq} (where q = 1 p).
- ► The special quantity $\frac{S_n np}{\sqrt{npq}}$ describes the number of standard deviations that S_n is above or below its mean.
- What's the mean and variance of this special quantity? Is it roughly normal?
- DeMoivre-Laplace limit theorem (special case of central limit theorem):

$$\lim_{n\to\infty} P\{a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\} \to \Phi(b) - \Phi(a).$$

► This is $\Phi(b) - \Phi(a) = P\{a \le X \le b\}$ when X is a standard normal random variable.

► Toss a million fair coins. Approximate the probability that I get more than 501,000 heads.

- ► Toss a million fair coins. Approximate the probability that I get more than 501,000 heads.
- ▶ Answer: well, $\sqrt{npq} = \sqrt{10^6 \times .5 \times .5} = 500$. So we're asking for probability to be over two SDs above mean. This is approximately $1 \Phi(2) = \Phi(-2) \approx .159$.

- ► Toss a million fair coins. Approximate the probability that I get more than 501,000 heads.
- ► Answer: well, $\sqrt{npq} = \sqrt{10^6 \times .5 \times .5} = 500$. So we're asking for probability to be over two SDs above mean. This is approximately $1 \Phi(2) = \Phi(-2) \approx .159$.
- ▶ Roll 60000 dice. Expect to see 10000 sixes. What's the probability to see more than 9800?

- ► Toss a million fair coins. Approximate the probability that I get more than 501,000 heads.
- ► Answer: well, $\sqrt{npq} = \sqrt{10^6 \times .5 \times .5} = 500$. So we're asking for probability to be over two SDs above mean. This is approximately $1 \Phi(2) = \Phi(-2) \approx .159$.
- ▶ Roll 60000 dice. Expect to see 10000 sixes. What's the probability to see more than 9800?
- ► Here $\sqrt{npq} = \sqrt{60000 \times \frac{1}{6} \times \frac{5}{6}} \approx 91.28$.

- ► Toss a million fair coins. Approximate the probability that I get more than 501,000 heads.
- ► Answer: well, $\sqrt{npq} = \sqrt{10^6 \times .5 \times .5} = 500$. So we're asking for probability to be over two SDs above mean. This is approximately $1 \Phi(2) = \Phi(-2) \approx .159$.
- ▶ Roll 60000 dice. Expect to see 10000 sixes. What's the probability to see more than 9800?
- ► Here $\sqrt{npq} = \sqrt{60000 \times \frac{1}{6} \times \frac{5}{6}} \approx 91.28$.
- ► And $200/91.28 \approx 2.19$. Answer is about $1 \Phi(-2.19)$.

MIT OpenCourseWare https://ocw.mit.edu

18.600 Probability and Random Variables Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.