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I Neurological: When I think “it will rain tomorrow” the
“truth-sensing” part of my brain exhibits 30 percent of its
maximum electrical activity.

I Frequentist: Of the last 1000 days that meteorological
measurements looked this way, rain occurred on the
subsequent day 300 times.

I Market preference (“risk neutral probability”): The
market price of a contract that pays 100 if it rains tomorrow
agrees with the price of a contract that pays 30 tomorrow no
matter what.

I Personal belief: If you offered me a choice of these
contracts, I’d be indifferent. (If need for money is different in
two scenarios, I can replace dollars with “units of utility.”)

What does “I’d say there’s a thirty percent chance it will 
rain tomorrow” mean? 
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I Roll a die n times. Define a sample space to be
{1, 2, 3, 4, 5, 6}n, i.e., the set of a1, . . . , an with each
aj ∈ {1, 2, 3, 4, 5, 6}.

I Shuffle a standard deck of cards. Sample space is the set of
52! permutations.

I Will it rain tomorrow? Sample space is {R,N}, which stand
for “rain” and “no rain.”

I Randomly throw a dart at a board. Sample space is the set of
points on the board.

Even more fundamental question: defining a set of possible 
outcomes 
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I If a set A is comprised of some of the elements of B, say A is
a subset of B and write A ⊂ B.

I Similarly, B ⊃ A means A is a subset of B (or B is a superset
of A).

I If S is a finite sample space with n elements, then there are 2n

subsets of S .

I Denote by ∅ the set with no elements.

Event: subset of the sample space 

16



I Similarly, B ⊃ A means A is a subset of B (or B is a superset
of A).

I If S is a finite sample space with n elements, then there are 2n

subsets of S .

I Denote by ∅ the set with no elements.

Event: subset of the sample space 

I If a set A is comprised of some of the elements of B, say A is 
a subset of B and write A ⊂ B. 

17



I If S is a finite sample space with n elements, then there are 2n

subsets of S .

I Denote by ∅ the set with no elements.

Event: subset of the sample space 

I If a set A is comprised of some of the elements of B, say A is 
a subset of B and write A ⊂ B. 

I Similarly, B ⊃ A means A is a subset of B (or B is a superset 
of A). 

18



I Denote by ∅ the set with no elements.

Event: subset of the sample space 

I If a set A is comprised of some of the elements of B, say A is 
a subset of B and write A ⊂ B. 

I Similarly, B ⊃ A means A is a subset of B (or B is a superset 
of A). 

I If S is a finite sample space with n elements, then there are 2n 

subsets of S . 

19



Event: subset of the sample space 

I If a set A is comprised of some of the elements of B, say A is 
a subset of B and write A ⊂ B. 

I Similarly, B ⊃ A means A is a subset of B (or B is a superset 
of A). 

I If S is a finite sample space with n elements, then there are 2n 

subsets of S . 

I Denote by ∅ the set with no elements. 

20



I A ∩ B means the intersection of A and B, the set of elements
contained on both A and B.

I Ac means complement of A, set of points in whole sample
space S but not in A.

I A \ B means “A minus B” which means the set of points in A
but not in B. In symbols, A \ B = A ∩ (Bc).

I ∪ is associative. So (A ∪ B) ∪ C = A ∪ (B ∪ C ) and can be
written A ∪ B ∪ C .

I ∩ is also associative. So (A ∩ B) ∩ C = A ∩ (B ∩ C ) and can
be written A ∩ B ∩ C .

Intersections, unions, complements 

I A ∪ B means the union of A and B, the set of elements 
contained in at least one of A and B. 
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I If S is event that it snows, R is event that it rains, then
(S ∪ R)c = Sc ∩ Rc

I More generally: (∪n
i=1Ei )

c = ∩n
i=1(Ei )

c

I “It will not both snow and rain” means “Either it will not
snow or it will not rain.”

I (S ∩ R)c = Sc ∪ Rc

I (∩n
i=1Ei )

c = ∪n
i=1(Ei )

c

DeMorgan’s laws 

I “It will not snow or rain” means “It will not snow and it will 
not rain.” 
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I P(S) = 1.

I Finite additivity: P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅.
I Countable additivity: P(∪∞

i=1Ei ) =
P∞

i=1 P(Ei ) if Ei ∩ Ej = ∅
for each pair i and j .

Axioms of probability 

I P(A) ∈ [0, 1] for all A ⊂ S . 
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Axioms of probability 
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I Frequentist: P(A) is the fraction of times A occurred during
the previous (large number of) times we ran the experiment.
Seems to satisfy axioms...

I Market preference (“risk neutral probability”): P(A) is
price of contract paying dollar if A occurs divided by price of
contract paying dollar regardless. Seems to satisfy axioms,
assuming no arbitrage, no bid-ask spread, complete market...

I Personal belief: P(A) is amount such that I’d be indifferent
between contract paying 1 if A occurs and contract paying
P(A) no matter what. Seems to satisfy axioms with some
notion of utility units, strong assumption of “rationality”...

I Neurological: When I think “it will rain tomorrow” the 
“truth-sensing” part of my brain exhibits 30 percent of its 
maximum electrical activity. Should have P(A) ∈ [0, 1] and 
presumably P(S) = 1 but not necessarily 
P(A ∪ B) = P(A) + P(B) when A ∩ B = ∅. 
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