18.600 Midterm 2, Spring 2018 Solutions

1. (20 points) Suppose that X is a random variable with probability density function given by

$$
f(x)= \begin{cases}0 & x \leq 0 \\ x / 2 & 0<x \leq 2 \\ 0 & x>2\end{cases}
$$

Suppose that Y is an independent random variable with the same probability density function. Write $Z=X^{2}+Y^{2}$.
(a) Compute the joint density function $f_{X, Y}(x, y)$. ANSWER: $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ which is $x y / 4$ when $0<x \leq 2$ and $0<y \leq 2$, and 0 otherwise.
(b) Compute $E[Z]$. (You should be able to get an explicit number.) ANSWER:

$$
E\left[X^{2}+Y^{2}\right]=E\left[X^{2}\right]+E\left[Y^{2}\right]=2 E\left[X^{2}\right]=2 \int_{0}^{2} x^{2} x / 2 d x=2 x^{4} / 8_{0}^{2}=4
$$

(c) Compute $P(\max \{X, Y\} \leq 1)$. ANSWER:

$$
P(\max \{X, Y\} \leq 1)=P(X \leq 1, Y \leq 1)=P(X \leq 1)^{2}=\left(\int_{0}^{1} x / 2 d x\right)^{2}=(1 / 4)^{2}=1 / 16
$$

2. (10 points) In a certain population, there are $n=110000$ healthy people, each of whom has a $p=.01$ chance (independently of everyone else) of developing a certain disease during the course of a given decade. Let X be the number of people who develop the disease.
(a) Compute $E[X]$ and $\operatorname{Var}[X]$. ANSWER: $E[X]=n p=1100$ and $\operatorname{Var}[X]=n p q=1100 \cdot .99=1089$.
(b) Use a normal random variable to estimate $P(1100<X<1133)$. You may use the function

$$
\Phi(a)=\int_{-\infty}^{a} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x
$$

in your answer. ANSWER: $S D(X)=\sqrt{\operatorname{Var}[X]}=33$ so this is probability X is between 0 and 1 standard deviations above mean, which is approximately $\Phi(1)-\Phi(0)$ by de Moivre Laplace.
3. (20 points) Suppose that X_{1}, X_{2} and X_{3} are independent random variables, each of which has probability density function

$$
f(x)= \begin{cases}0 & x<0 \\ e^{-x} & x \geq 0\end{cases}
$$

Write $X=X_{1}+X_{2}+X_{3}$. Write $A=\min \left\{X_{1}, X_{2}, X_{3}\right\}$. Write $B=\max \left\{X_{1}, X_{2}, X_{3}\right\}$.
(a) Give a probability density function for X. ANSWER: This is Gamma distribution with parameters $n=3$ and $\lambda=1$, so $f_{X}(x)=x^{2} e^{-x} / 2$! for $x \geq 0$
(b) Give a probability density function for A. ANSWER: Minimum of three rate one exponentials is exponential with rate three, so $f_{A}(x)=3 e^{-3 x}$ for $x \geq 0$.
(c) Compute $E[B]$ and $\operatorname{Var}[B]$. ANSWER: This is the "radioactive decay" problem. $E[B]=1+\frac{1}{2}+\frac{1}{3}=\frac{11}{6}$ and $\operatorname{Var}[B]=1+\frac{1}{4}+\frac{1}{9}=\frac{49}{36}$.
4. (10 points) Suppose that X, Y, and Z are independent random variables, each of which has probability density function $f(x)=\frac{1}{\pi\left(1+x^{2}\right)}$. Write $V=3 X$ and $W=X+Y+Z$.
(a) Compute the probability density function for V. ANSWER: $f_{V}(x)=\frac{1}{3} f_{X}(x / 3)=\frac{1}{3 \pi\left(1+(x / 3)^{2}\right)}$.
(b) Compute the probability density function for W. ANSWER: W has the same law as V (by amazing property of Cauchy random variables) so $f_{W}(x)=f_{V}(x)$.
5.(10 points) Let X and Y be independent standard normal random variables (so each has mean zero and variance one).
(a) Compute $P\left(X^{2}+Y^{2} \leq 1\right)$. Give an explicit value. ANSWER: Since X and Y are independent we have $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)=\frac{1}{2 \pi} e^{-x^{2}-y^{2}} d x d y$. Switching to polar coordinates, this is $\int_{0}^{1} \int_{0}^{2 \pi} \frac{1}{2 \pi} e^{-x^{2} / 2-y^{2} / 2} d \theta d r=\int_{0}^{1} r e^{-r^{2}}=-e^{-r^{2} / 2^{1}}=1-e^{-1 / 2}$.
(b) Compute $P(\max \{|X|,|Y|\} \leq 1)$. You may use the function

$$
\Phi(a)=\int_{-\infty}^{a} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x
$$

in your answer. ANSWER: By independence of X and Y we have $P(\max \{|X|,|Y|\} \leq 1)=P(|X| \leq 1) P(|Y| \leq 1)=(\Phi(1)-\Phi(-1))^{2}$.
6. (20 points) Let X and Y be independent uniform random variables on $[0,1]$ and write $Z=X+Y$.
(a) Compute the conditional expectation $E[X \mid Z]$. (That is, express the random variable $E[X \mid Z]$ as a function of the random variable Z.) ANSWER: Note that
$E[X+Y \mid Z]=E[Z \mid Z]=Z$. By additivity of conditional expectation and symmetry $E[X+Y \mid Z]=E[X \mid Z]+E[Y \mid Z]=2 E[X \mid Z]$. So $E[X \mid Z]=Z / 2$.
(b) Compute the conditional expectation $E[Z \mid X]$. (That is, express the random variable $E[Z \mid X]$ as a function of the random variable X.) ANSWER:
$E[X+Y \mid X]=E[X \mid X]+E[Y \mid X]=X+E[Y \mid X] . X$ and Y are independent so $E[Y \mid X]=E[Y]=1 / 2$. Answer is $X+1 / 2$.
(c) Compute the conditional variance $\operatorname{Var}[Z \mid Y]$. (That is, express the random variable $\operatorname{Var}[Z \mid Y]$ as a function of the random variable Y.) ANSWER: Given Y, the conditional law of Z is uniform on $[Y, Y+1]$, and thus the conditional variance is $1 / 12$ (regardless of the Y value) so the answer is just $1 / 12$.
(d) Compute the correlation coefficient $\rho(X, Z)$. ANSWER:

$$
\frac{\operatorname{Cov}(X, Z)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Z)}}=\frac{\operatorname{Cov}(X, X+Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(X+Y)}}=\frac{\operatorname{Var}(X)}{\sqrt{\operatorname{Var}(X) 2 \operatorname{Var}(X)}}=\frac{1}{\sqrt{2}}
$$

7. (10 points) Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are independent uniform random variables on the interval $[0,1]$. Write $X=X_{1}+X_{2}+\ldots+X_{n}$.
(a) Compute the characteristic function $\phi_{X_{1}}(t)$. ANSWER:

$$
\phi_{X_{1}}(t)=E\left[e^{i t X_{1}}\right]=\int_{0}^{1} e^{i t x} d x=e^{i t x} / i t{ }_{0}^{1}=\left(e^{i t}-1\right) / i t
$$

(b) Compute the characteristic function $\phi_{X}(t)$. ANSWER: $\phi_{X}(t)=\left(\phi_{X_{1}}(t)\right)^{n}$.

MIT OpenCourseWare
https://ocw.mit.edu

18.600 Probability and Random Variables

Fall 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

