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I Each morning a fair coin decide which of the two showers first.

I After Bob showers, if there is at least one towel in the
bathroom, Bob uses the towel and leaves it draped over a
chair in the walk-in closet. If there is no towel in the
bathroom, Bob grumpily goes to the walk-in closet, dries off
there, and leaves the towel in the walk-in closet

I When Alice showers, she first checks to see if at least one
towel is present. If a towel is present, she dries off with that
towel and returns it to the bathroom towel rack. Otherwise,
she cheerfully retrieves both towels from the walk-in closet,
then showers, dries off and leaves both towels on the rack.

I Problem: describe towel-distribution evolution as a Markov
chain and determine (over the long term) on what fraction of
days Bob emerges from the shower to find no towel.

Markov chains 

I Alice and Bob share a home with a bathroom, a walk-in 
closet, and 2 towels. 
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I Shower state change Bob: 2→ 1, 1→ 0, 0→ 0.

I Shower state change Alice: 2→ 2, 1→ 1, 0→ 2.

I Morning state change AB: 2→ 1, 1→ 0, 0→ 1.

I Morning state change BA: 2→ 1, 1→ 2, 0→ 2.

I Markov chain matrix:

M =

⎛⎝0 .5 .5
.5 0 .5
0 1 0

⎞⎠
I Row vector π such that πM = π (with components of π

summing to one) is
�
2
9

4
9

1
3

�
.

I Bob finds no towel only if morning starts in state zero and
Bob goes first. Over long term Bob finds no towel 2

9 ×
1
2 = 1

9
fraction of the time.

—Markov chains answers 

I Let state 0, 1, 2 denote bathroom towel number. 
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I Morning state change AB: 2→ 1, 1→ 0, 0→ 1.
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I Morning state change BA: 2→ 1, 1→ 2, 0→ 2.

I Markov chain matrix:
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I Row vector π such that πM = π (with components of π
summing to one) is

�
2
9

4
9

1
3

�
.
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0 1 0 

12



I Bob finds no towel only if morning starts in state zero and
Bob goes first. Over long term Bob finds no towel 2

9 ×
1
2 = 1

9
fraction of the time.

—Markov chains answers 

I Let state 0, 1, 2 denote bathroom towel number. 

I Shower state change Bob: 2 → 1, 1 → 0, 0 → 0. 

I Shower state change Alice: 2 → 2, 1 → 1, 0 → 2. 

I Morning state change AB: 2 → 1, 1 → 0, 0 → 1. 

I Morning state change BA: 2 → 1, 1 → 2, 0 → 2. 

I Markov chain matrix: ⎛ ⎞ 
0 .5 .5 ⎝ ⎠ M = .5 0 .5 
0 1 0 

I Row vector π such that πM = π (with components of π � � 
summing to one) is . 1 

3 
4 
9 

2 
9 
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—

9

Markov chains answers 

I Let state 0, 1, 2 denote bathroom towel number. 

I Shower state change Bob: 2 → 1, 1 → 0, 0 → 0. 

I Shower state change Alice: 2 → 2, 1 → 1, 0 → 2. 

I Morning state change AB: 2 → 1, 1 → 0, 0 → 1. 

I Morning state change BA: 2 → 1, 1 → 2, 0 → 2. 

I Markov chain matrix: ⎛ ⎞ 
0 .5 .5 ⎝ ⎠ M = .5 0 .5 
0 1 0 

I Row vector π such that πM = π (with components of π � � 
summing to one) is 1 

3 
4 
9 

2 
9 . 

I Bob finds no towel only if morning starts in state zero and 
2 × 1 1 Bob goes first. Over long term Bob finds no towel 14 = 9 2 

fraction of the time. 



I Use the central limit theorem to approximate the probability
that Y9000000 is greater than 6000.

Optional stopping, martingales, central limit theorem 

Suppose that X1, X2, X3, . . . is an infinite sequence of independent 
random variables which are each equal to 1 with probability 1/2 Pn and −1 with probability 1/2. Let Yn = Answer the i=1 Xi . 
following: 

I What is the the probability that Yn reaches −25 before the 
first time that it reaches 5? 
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I One standard deviation is
√
9000000 = 3000. We want

probability to be 2 standard deviations above mean. Should
be about

R∞
2

1√
2π
e−x

2/2dx .

—Optional stopping, martingales, central limit theorem 
answers 

I p−2525 + p55 = 0 and p−25 + p5 = 1. Solving, we obtain 
p−25 = 1/6 and p5 = 5/6. 
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—Optional stopping, martingales, central limit theorem 
answers 

I p−2525 + p55 = 0 and p−25 + p5 = 1. Solving, we obtain 
p−25 = 1/6 and p5 = 5/6. √ 

I One standard deviation is 9000000 = 3000. We want 
probability to be 2 standard deviations above mean. Should R ∞ √1 −x be about e 

2/2dx . 2 2π 
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I Yn =
Pn

i=1 iXi

I Yn =
Pn

i=1 X
2
i − n

I Yn =
Qn

i=1(1 + Xi )
I Yn =

Qn
i=1(Xi − 1)

Martingales 

I Let Xi be independent random variables with mean zero. In 
which of the cases below is the sequence Yi necessarily a 
martingale? 
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I Yn =
Qn

i=1(1 + Xi )
I Yn =

Qn
i=1(Xi − 1)

Martingales 

I Let Xi be independent random variables with mean zero. In 
which of the cases below is the sequence Yi necessarily a 
martingale?P 

I Yn = n
i=1 iXi Pn 

I Yn = X 2 − n i=1 i 
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I Yn =
Qn

i=1(Xi − 1)

Martingales 

I Let Xi be independent random variables with mean zero. In 
which of the cases below is the sequence Yi necessarily a 
martingale?P 

I Yn = n
i=1 iXi Pn 

I Yn = X 2 − n Q i=1 i 
n 

I Yn = (1 + Xi ) i=1 
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Martingales 

I Let Xi be independent random variables with mean zero. In 
which of the cases below is the sequence Yi necessarily a 
martingale?Pn 

I Yn = iXi Pi=1 
n 

I Yn = X 2 − n Q i=1 i 
I Yn = n (1 + Xi ) Qi=1 

n 
I = (Xi − 1) Yn i=1 
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Martingales 

I Yes, no, yes, no. 
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I E [e3X−3].
I E [eX1X∈(a,b)] for fixed constants a < b.

Calculations like those needed for Black-Scholes derivation 

I Let X be a normal random variable with mean 0 and variance 
1. Compute the following (you may use the function 

a √1 −x Φ(a) := 
R 

e 
2/2dx in your answers): −∞ 2π 
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Calculations like those needed for Black-Scholes derivation 

I Let X be a normal random variable with mean 0 and variance 
1. Compute the following (you may use the function 

a √1 −x Φ(a) := 
R 

e 
2/2dx in your answers): −∞ 2π 
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–
Calculations like those needed for Black-Scholes derivation 
answers 

Z ∞ 1 3x−3 −x E [e 3X −3] = e √ e 
2/2dx 

−∞ 2π Z ∞ 1 − x 2−6x+6 
= √ e 2 dx 

−∞ 2π Z ∞ 1 − x 2−6x+9 
= √ e 2 e 3/2dx 

−∞ 2π Z ∞ 1 (x−3)2 
3/2 − 

2 = e √ e dx 
−∞ 2π 

3/2 = e 
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–
Calculations like those needed for Black-Scholes derivation 
answers 

Z b 1 x −x E [e X 1X ∈(a,b)] = e √ e 
2/2dx 

a 2π Z b 1 − x 2 
x = e √ e 2 dx Zab 

2π 

1 2−2x+1−1 − x 
= √ e 2 dx 

a Z 
2 
b 
π 

1 (x−1)2 
1/2 − = e √ e 2 dx Zab−1 

2π 
2 1 − x 1/2 = e √ e 2 dx 

a−1 2π 

= e 1/2(Φ(b − 1) − Φ(a − 1)) 29



I GRADUATE LEVEL PROBABILITY
(a) 18.675 (formerly 18.175) Theory of Probability
(b) 18.676 (formerly 18.176) Stochastic calculus
(c) 18.677 (formerly 18.177) Topics in stochastic processes (topics

vary, can be pretty much anything in probability, repeatable)
I GRADUATE LEVEL STATISTICS

(a) 18.655 Mathematical statistics
(b) 18.657 Topics in statistics (topics vary, repeatable)

I OUTSIDE OF MATH DEPARTMENT
(a) Look up new MIT minor in statistics and data sciences.
(b) Look up longer lists of probability/statistics courses at https:

//stat.mit.edu/academics/minor-in-statistics/ or
http://student.mit.edu/catalog/m18b.html

(c) Ask other MIT faculty how they use probability and statistics
in their research.

If you want more probability and statistics... 

I UNDERGRADUATE: 
(a) 18.615 Introduction to Stochastic Processes 
(b) 18.642 Topics in Math with Applications in Finance 
(c) 18.650 Statistics for Applications 
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I You will probably do some important things with your lives.

I I hope your probabilistic shrewdness serves you well.

I Thinking more short term...

I Happy exam day!

I And may the odds be ever in your favor.

Thanks for taking the course! 

I Considering previous generations of mathematically inclined 
MIT students, and adopting a frequentist point of view... 
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